High Frequency Methods for Simulation of High Resolution Imaging in Terahertz Regime

Article

Abstract

High resolution imaging in the terahertz (THz) frequency range is investigated theoretically in this paper through the use of the high frequency methods in computational electromagnetics (CEM). Physical optics (PO), shooting and bouncing ray (SBR) and truncated-wedge incremental length diffraction coefficients (TW-ILDCs) methods are combined together to compute the scattered fields, which are then used to construct the inverse synthetic aperture radar (ISAR) images through two dimensional fast Fourier transform (2D-FFT). The corresponding ISAR images clearly show that high range and bearing resolution can be easily realized for THz carrier waves with broad bandwidth.

Keywords

THz imaging High frequency method TW-ILDCs 

References

  1. 1.
    P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–928 (2002).CrossRefGoogle Scholar
  2. 2.
    B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 254801 (2002).CrossRefGoogle Scholar
  3. 3.
    J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol 20, S266–S280 (2005).CrossRefGoogle Scholar
  4. 4.
    M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz Spectroscopy,” J. Phys. Chem. B 106 (29), 7146–7159 (2002).CrossRefGoogle Scholar
  5. 5.
    H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).CrossRefGoogle Scholar
  6. 6.
    B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20 (16), 1716–1718 (1995).CrossRefGoogle Scholar
  7. 7.
    P. Y. Han, G. C. Cho, and X. C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 250 (4), 242–244 (2000).CrossRefGoogle Scholar
  8. 8.
    S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150 (1), 22–26 (1998).CrossRefGoogle Scholar
  9. 9.
    O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. F. Federici, J. D. Wynn, L. N. Pfeifer, and K. W. West, “Collection-Mode Near-Field Imaging With 0.5-THz Pulses,” IEEE J. Sel. Top. Quantum Electron 7 (41), 600–607 (2001).Google Scholar
  10. 10.
    Q. Chen, Z. Jiang, G. X. Xu, and X. C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25 (15), 1122–1124 (2000).CrossRefGoogle Scholar
  11. 11.
    N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81 (9), 1558–1560 (2002).CrossRefGoogle Scholar
  12. 12.
    J. M. Song, C. C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).CrossRefGoogle Scholar
  13. 13.
    G. D. Martinis, T. Goyette, M. Coulombe, and J. Waldman, “A 1.56 THz Spot Scanning Radar Range for Fully Polarimetric W-Band Scale Model Measurements,” Proceedings of the 22nd Annual Symposium of the Antenna and Propagation, 2000.Google Scholar
  14. 14.
    J. F. Zhang and T. J. Cui, “Subtle detection of target profiles using submillimeter waves,” 2006 Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, Shanghai, China, Sept. 18–22, 2006, p. 16.Google Scholar
  15. 15.
    J. Waldman, H. R. Fetterman, P. E. Duffy, T. G. Bryant, and P. E. Tannenwald, “Submillimeter model measurements and their applications to millimeter radar systems,” in Proceedings of the 4th International Conference on Infrared Near-Millimeter Waves, Dec. 1979, pp. 49¨C50.Google Scholar
  16. 16.
    M. J. Coulombe, T. Horgan, J. Waldman, G. Szatkowski, and W. Nixon, “A 524 GHz polarimetric compact range for scale model RCS measurements,” in Proceedings of Antenna Measurements and Techniques Association, Monterey, CA, Oct. 1999.Google Scholar
  17. 17.
    V. M. Babič, V. S. Buldyrev, and E. F. Kuester, Short-wavelength diffraction theory: asymptotic methods (Springer, Berlin, 1991).MATHGoogle Scholar
  18. 18.
    H. Ling, R. C. Chou, and S. W. Lee, “Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity,” IEEE Trans. Antennas Propag. 37, 194–205 (1989).CrossRefGoogle Scholar
  19. 19.
    P. M. Johansen, “Uniform Physical Theory of Diffraction Equivalent Edge Current for Truncated Wedge Strips,” IEEE Trans. Antennas Propag. 44, 989–995 (1996).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. A. Shore and A. D. Yaghjian, “Shadow boundary incremental length diffraction coefficients applied to scattering from 3-D bodies,” IEEE Trans. Antennas Propag. 40, 200–210 (2001).CrossRefMathSciNetGoogle Scholar
  21. 21.
    J. G. Moore, A. D. Yaghjian, and R. A. Shore, “Shadow Boundary and Truncated Wedge ILDCs in Xpatch,” IEEE Antennas and Propagation Society International Symposium, 2005.Google Scholar
  22. 22.
    M. L. Hastriter, “A study of MLFMA for large-scale scattering problems,” Ph.D. Thesis of University of Illinois at Urbana-Champaign, 2003.Google Scholar
  23. 23.
    Z. Li, T. J. Cui, X. J. Zhong, Y. B. Tao, and H. Lin, “Electromagnetic Scattering Characteristics of PEC Targets in Terahertz Regime,” IEEE Antennas Propag. Magazine 51, 39–50 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Information Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.State Key Laboratory of Millimeter WavesSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations