Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources

  • Harish M. Manohara
  • Risaku Toda
  • Robert H. Lin
  • Anna Liao
  • Michael J. Bronikowski
  • Peter H. Siegel
Article

Abstract

We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).

Keywords

Field emission Carbon nanotube CNTs Nanoklystron Vacuum tube High frequency sources 

References

  1. 1.
    P.H. Siegel, A. Fung, H.M. Manohara, J. Xu, B. Chang, Proc. 12th International Symposium on Space Terahertz Technology, pp. 94-103 (2001).Google Scholar
  2. 2.
    D. Vaniman, D. Bish, D. F. Blake, S. T. Elliot, P. Sarrazin, S. A. Collins, and S. Chipera, Journal of Geophysical Research 103 (E13), 31,477–31,489 (1998).CrossRefGoogle Scholar
  3. 3.
    R. Gomer, Field Emission and Field Ionization, (AVS Classics Series (American Institute of Physics, New York, 1993).Google Scholar
  4. 4.
    C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, Journal of Applied Physics 47 (12), 5248–5263 (1976).CrossRefGoogle Scholar
  5. 5.
    J. T. Trujillo and C. E. Hunt, Journal of Science and Technology B 11 (2), 454–458 (1993).CrossRefGoogle Scholar
  6. 6.
    D. Hamilton, J. Knipp and J.B. H. Kuper, Klystrons and Microwave Triodes, (M.I.T. Radiation Lab Series, vol. 7, McGraw Hill Book Co., 1948) Chapter12,.Google Scholar
  7. 7.
    S. Ijima, Nature 354, 56–58 (1991).CrossRefGoogle Scholar
  8. 8.
    J. M. Bonard, H. Kind, T. Stöckli, and L. Nilsson, Solid-State Electronics 45, 893–914 (2001).CrossRefGoogle Scholar
  9. 9.
    D. Sparks, L. Jordan, and J. Frazee, Sensors and Actuators A55, 179 (1996).Google Scholar
  10. 10.
    T. Anthony, Journal of Applied Physics 58 (5), 2419 (1983).CrossRefGoogle Scholar
  11. 11.
    K. Albaugh and J. Electrochem, Soc 138 (10), 3089 (1991).Google Scholar
  12. 12.
    M. Schmidt, Proceedings of IEEE 86 (8), 1575 (1998).CrossRefGoogle Scholar
  13. 13.
    D. Sparks, G. Queen, R. Weston, G. Woodward, M. Putty, L. Jordan, S. Zarabadi, and K. Jayakar, Journal of Micromechanics and Microengineering 11 (6), 630–634 (2001).CrossRefGoogle Scholar
  14. 14.
    H. M. Manohara, M. J. Bronikowski, R. Toda, E. Urgiles, R. Lin, K. Yee, A. B. Kaul, and J. Hong, Proceedings of SPIE 6959, 695906-1-6 (2008).Google Scholar
  15. 15.
    L. Nilsson et al., Applied Physics Letters 76, 2071–2073 (2000).CrossRefGoogle Scholar
  16. 16.
    H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Applied Physics Letters 76, 1776–1778 (2000).CrossRefGoogle Scholar
  17. 17.
    W. Zhu, C. Bower, G. P. Kochankski, and S. Jin, Solid-State Electronics 45, 921–928 (2001).CrossRefGoogle Scholar
  18. 18.
    J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, Applied Physics Letters 80, 2392–2394 (2002).CrossRefGoogle Scholar
  19. 19.
    K. B. K. Teo et al., Applied Physics Letters 80, 2011–2013 (2002).CrossRefGoogle Scholar
  20. 20.
    H. M. Manohara, M. J. Bronikowski, M. Hoenk, B. D. Hunt, and P. H. Siegel, Journal of Vacuum Science & Technology B 23 (1), 157–161 (2005).CrossRefGoogle Scholar
  21. 21.
    H. M. Manohara et al., International Conference on Infrared (Millimeter Wave Technologies, Williamsburg, VA, 2005).Google Scholar
  22. 22.
    D. McClain, J. Wu, N. Tavan, J. Jiao, C. M. McCarter, R. F. Richards, S. Mesarovic, C. D. Richards, and D. F. Bahr, Journal of Physical Chemistry C 111, 7514–7520 (2007).CrossRefGoogle Scholar
  23. 23.
    R. H. Fowler and L. W. Nordheim, Proc R Soc London, Ser A 119, 173 (1928).CrossRefGoogle Scholar
  24. 24.
    J. M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, Physical Review Letters 89 (19), 197602-1-4 (2002).CrossRefGoogle Scholar
  25. 25.
    G. Pirio et al., Nanotechnology 13, 1–4 (2002).CrossRefGoogle Scholar
  26. 26.
    R. Toda, M. J. Bronikowski, E. Luong, and H. Manohara, “NPO 44996,” NASA Tech Brief 32 (4), 50 (2008).Google Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Harish M. Manohara
    • 1
  • Risaku Toda
    • 1
  • Robert H. Lin
    • 1
  • Anna Liao
    • 1
  • Michael J. Bronikowski
    • 1
    • 3
  • Peter H. Siegel
    • 1
    • 2
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Beckman Institute, California Institute of TechnologyPasadenaUSA
  3. 3.Atomate CorporationSimi ValleyUSA

Personalised recommendations