Terahertz Dance of Proteins and Sugars with Water

Article

Abstract

The influence of water on biomolecular interfaces and functionality has been in the focus of hydration studies. Improved experimental and computational probes gave insight to this question from different perspectives. The aspect of collective water network dynamics has been experimentally accessed by terahertz (THz) spectroscopy, which is sensitive to even small solute-induced rearrangements of the water network in the biomolecular surroundings. THz hydration studies uncovered that the dynamical hydration shell of saccharides consists of several hundred water molecules and up to thousand water molecules for proteins. Mutations at the protein surface and inside the core perturb the dynamical hydration, whereas it is noticeable that native wild-type proteins most significantly affect hydration dynamics. Kinetic THz absorption (KITA) studies of protein folding recently revealed that solvent dynamics are coupled to secondary structure formation of the protein. The solvent water network is dynamically rearranged in milliseconds before the protein folds to its native state within the following seconds. THz spectroscopy gives experimental evidence that collective long-range dynamics are a key factor of biomolecular hydration.

Keywords

Dynamical hydration shell Biomolecular solvation THz spectroscopy THz defect THz excess KITA 

References

  1. 1.
    T. Gallagher, P. Alexander, P. Bryan, and G. L. Gilliland, Biochemistry 33, 4721 (1994).CrossRefGoogle Scholar
  2. 2.
    B. Halle, Phil. Trans. R. Soc. London 359, 1207 (2004).CrossRefGoogle Scholar
  3. 3.
    J. A. Ernst, R. T. Clubb, H.-X. Zhou, A. M. Gronenborn, and G. M. Clore, Science 267, 1813 (1995).CrossRefGoogle Scholar
  4. 4.
    Y. Fujiyoshi et al., Curr. Op. Struct. Biol. 12, 509 (2002).CrossRefGoogle Scholar
  5. 5.
    A. Frölich et al., Faraday Discuss 141, 117 (2009).CrossRefGoogle Scholar
  6. 6.
    T. Head-Gordon, Proc. Natl. Acad. Sci. USA 92, 8308 (1995).CrossRefGoogle Scholar
  7. 7.
    R. K. Murakra, and T. Head-Gordon, J. Phys. Chem. B 112, 179 (2008).CrossRefGoogle Scholar
  8. 8.
    N. Nandi, K. Bhattacharyya, and B. Bagchi, Chemical Reviews 100, 2013 (2000)Jun.CrossRefGoogle Scholar
  9. 9.
    P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and F. G. Parak, Proc. Natl. Acad. Sci. USA 99, 16047 (2002).CrossRefGoogle Scholar
  10. 10.
    D. P. Zhong, S. K. Pal, D. Q. Zhang, S. I. Chan, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99, 13 (2002).CrossRefGoogle Scholar
  11. 11.
    L. Zhang et al., Proc Natl Acad Sci USA 104, 18461 (2007)Nov 20.CrossRefGoogle Scholar
  12. 12.
    B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, Faraday Discuss. 141, 161 (2009).CrossRefGoogle Scholar
  13. 13.
    S. Ebbinghaus et al., Proc. Natl. Acad. Sci. USA 104, 20749 (2007).CrossRefGoogle Scholar
  14. 14.
    S. V. Evans, and G. D. Brayer, J. Mol. Biol. 213, 885 (1990).CrossRefGoogle Scholar
  15. 15.
    S. Dexheimer, Terahertz spectroscopy: principles and applications. (Taylor & Francis, London, 2007)pp.Google Scholar
  16. 16.
    D. M. Leitner, M. Havenith, and M. Gruebele, Int. Rev. Phys. Chem. 25, 553 (2006).CrossRefGoogle Scholar
  17. 17.
    P. H. Siegel, IEEE Trans. Microwave Theor. Tech 50, 910 (2002).CrossRefGoogle Scholar
  18. 18.
    P. H. Siegel, IEEE Trans. Microwave Theor. Tech 52, 2438 (2004).CrossRefGoogle Scholar
  19. 19.
    J. Xu, K. W. Plaxco, and S. J. Allen, Prot. Sci. 15, 1175 (2006).CrossRefGoogle Scholar
  20. 20.
    J.-Y. Chen, J. R. Knab, J. Cerne, A. G. Markelz, Phys. Rev. E 72, 040901(R) (2005).Google Scholar
  21. 21.
    D. M. Leitner, M. Gruebele, and M. Havenith, HFSP Journal 2, 314 (2008).CrossRefGoogle Scholar
  22. 22.
    B. Born, H. Weingärtner, E. Bründermann, M. Havenith, J. Am. Chem. Soc. (2009) doi:10.1021/ja808997y.
  23. 23.
    S. Ebbinghaus et al., J. Am. Chem. Soc. 130, 2374 (2008).CrossRefGoogle Scholar
  24. 24.
    T. Arikawa, M. Nagai, and K. Tanaka, Chem. Phys. Lett. 457, 12 (2008).CrossRefGoogle Scholar
  25. 25.
    P. L. Silvestrelli, M. Bernasconi, and M. Parrinello, Chem. Phys. Lett. 277, 478 (1997).CrossRefGoogle Scholar
  26. 26.
    S. Ebbinghaus et al., Proc. Nat. Acad. Sci. USA 104, 20749 (2007).CrossRefGoogle Scholar
  27. 27.
    U. Heugen et al., Proc. Natl. Acad. Sci. USA 103, 12301 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Heyden et al., J. Am. Chem. Soc. 130, 5773 (2008).CrossRefGoogle Scholar
  29. 29.
    J. R. Knab, J. Y. Chen, Y. He, and A. G. Markelz, Proc. IEEE 95, 1605 (2007).CrossRefGoogle Scholar
  30. 30.
    A. G. Markelz, IEEE J. Sel. Top. Quantum Electron. 14, 180 (2008).CrossRefGoogle Scholar
  31. 31.
    D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, Chem. Phys. Chem. 8, 2412 (2007).Google Scholar
  32. 32.
    J. Xu, K. W. Plaxco, and S. J. Allen, J. Phys. Chem. B. 110, 24255 (2006).CrossRefGoogle Scholar
  33. 33.
    C. F. Zhang, and S. M. Durbin, J. Phys. Chem. B. 110, 23607 (2006).CrossRefGoogle Scholar
  34. 34.
    S. E. Whitmire et al., Biophys. J. 85, 1269 (2003).CrossRefGoogle Scholar
  35. 35.
    J. Knab, J. Y. Chen, and A. G. Markelz, Biophys. J. 90, 2576 (2006).CrossRefGoogle Scholar
  36. 36.
    A. G. Markelz, J. R. Knab, and J. Y. Chen, Chem. Phys. Lett. 442, 413 (2007).CrossRefGoogle Scholar
  37. 37.
    K. Wood et al., J. Am. Chem. Soc. 130, 4586 (2008).CrossRefGoogle Scholar
  38. 38.
    J. A. Rupley, G. Careri, Adv. Protein Chem. 41 (1991).Google Scholar
  39. 39.
    C. Schröder, T. Rudas, S. Boresch, and O. Steinhauser, J. Chem. Phys. 124, 234907 (2006).CrossRefGoogle Scholar
  40. 40.
    B. Bagchi, Chem. Rev. 105, 3197 (2005).CrossRefGoogle Scholar
  41. 41.
    R. Elber, and M. Karplus, Phys. Rev. Lett. 56, 394 (1986).CrossRefGoogle Scholar
  42. 42.
    R. C. Herrick, and H. J. Stapleton, J. Chem. Phys. 65, 4778 (1976).CrossRefGoogle Scholar
  43. 43.
    D. M. Leitner, Ann. Rev. Phys. Chem. 59, 233 (2008).CrossRefGoogle Scholar
  44. 44.
    E. Bründermann et al., Opt. Express 14, 1829 (2006).CrossRefGoogle Scholar
  45. 45.
    R. Köhler et al., Nature 417, 156 (2002).CrossRefGoogle Scholar
  46. 46.
    B. S. Williams, Nature Photonics 1, 517 (2007).CrossRefGoogle Scholar
  47. 47.
    B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Electron. Lett. 42, 89 (2006).CrossRefGoogle Scholar
  48. 48.
    C. A. Schmuttenmaer, Chem. Rev. 104, 1759 (2004).CrossRefGoogle Scholar
  49. 49.
    M. Tonouchi, Nature Photonics 1, 97 (2007).CrossRefGoogle Scholar
  50. 50.
    A. Bergner et al., Rev. Sci. Inst. 76, 063110 (2005).CrossRefGoogle Scholar
  51. 51.
    E. Bründermann, B. Born, S. Funkner, M. Krüger, and M. Havenith, Proc. SPIE 7215, 72150E (2009).CrossRefGoogle Scholar
  52. 52.
    W. Block, Sci. Prog. 86, 77 (2003).CrossRefGoogle Scholar
  53. 53.
    J. H. Crowe, L. M. Crowe, and D. Chapman, Science 223, 701 (1984).CrossRefGoogle Scholar
  54. 54.
    S. J. Kim, B. Born, M. Havenith, and M. Gruebele, Angew. Chem. Int. Ed. Engl. 47, 6486 (2008).CrossRefGoogle Scholar
  55. 55.
    D. E. Rosenfeld, and C. A. Schmuttenmaer, J. Phys. Chem. B. 110, 14304 (2007).CrossRefGoogle Scholar
  56. 56.
    Q. Wu, and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).CrossRefGoogle Scholar
  57. 57.
    E. Larios, J. S. Li, K. Schulten, H. Kihara, M. Gruebele, J. Mol. Biol. 340 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Lehrstuhl für Physikalische Chemie IIRuhr-Universität BochumBochumGermany

Personalised recommendations