Semi-Analytical Calculation of Terahertz Signal Generated from Photocurrent Radiation in Traveling-Wave Photonic Mixers

  • Mohammad Neshat
  • Daryoosh Saeedkia
  • Safieddin Safavi-Naeini
Article

Abstract

A semi-analytical method based on distributed source transmission line model is proposed to analyze a traveling-wave terahertz photomixer integrated with a coplanar stripline waveguide. Multilayer spectral domain method along with complex image technique have been applied to calculate the distributed voltage source element in the transmission line representation. To find the coupled terahertz signal along the coplanar stripline, the transmission line equations are solved. The results obtained from the proposed method are verified by the full wave analysis.

Keywords

Coplanar stripline Distributed source Green’s function Photonic mixer Terahertz 

References

  1. 1.
    M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys.: Condens. Matter 18, 601–618 (2006).CrossRefGoogle Scholar
  2. 2.
    S. M. Kim, F. Hatami, and J. S. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).CrossRefGoogle Scholar
  3. 3.
    P. F. Taday, “Applications of terahertz spectroscopy to pharmaceutical sciences,” Phil. Trans. R. Soc. Lond. A 362(1815), 351–364 (2004).Google Scholar
  4. 4.
    N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, et al., “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 54, 105–3 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Piesiewicz, J. Jemaia, M. Kochb, and T. Kürnera, THz channel characterization for future wireless gigabit indoor communication systems, in The Proceedings of SPIE Conference, 2005 vol. 5727, pp. 166–176.Google Scholar
  6. 6.
    E. A. Michael, “Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz,” Semicond. Sci. Technol. 20, 164–177 (2005).Google Scholar
  7. 7.
    M. C. Teich, “Field-theoretical treatment of photomixing,” Appl. Phys. Lett. 14(6), 201–203 (1969).CrossRefGoogle Scholar
  8. 8.
    I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, et al., “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Elec. 41(5), 717–728 (2005).CrossRefGoogle Scholar
  9. 9.
    D. Saeedkia and S. Safavi-Naeini, “A comprehensive model for photomixing in ultrafast photoconductors,” IEEE Photonics Technol. Lett. 18(13), 1457–1459 (2006).CrossRefGoogle Scholar
  10. 10.
    D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Modeling and analysis of high-temperature superconductor terahertz photomixers,” IEEE Trans. Appl. Superconduct. 15(3), 3847–3855 (2005).Google Scholar
  11. 11.
    S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).CrossRefGoogle Scholar
  12. 12.
    D. Saeedkia, S. Safavi-Naeini, and R. R. Mansour, “The intraction of laser and photoconductor in a continuous-wave terahertz photomixer,” IEEE J. Quantum Elec. 41(9), 1188–1196 (2005).CrossRefGoogle Scholar
  13. 13.
    S. Ichikawa, “Analysis of transmission lines with distributed sources,” Electron. & Commun. Jpn. (Part I: Commun.) 69(2), 57–65 (1986).CrossRefMathSciNetGoogle Scholar
  14. 14.
    F. Mesa, C. Di Nallo, and D. R. Jackson, “The theory of surface-wave and space-wave leaky-mode excitation on microstrip lines,” IEEE Trans. Microwave Theory Tech. 47(2), 207–215 (1999).CrossRefGoogle Scholar
  15. 15.
    D. Pasqualini, A. Neto, and R. A. Wyss, “Distributed sources on coplanar waveguides: application to photomixers for THz local oscillators,” Microw. Opt. Technol. Lett. 33(6), 430–435 (2002).CrossRefGoogle Scholar
  16. 16.
    D. Saeedkia and S. Safavi-Naeini, “Modeling and analysis of a multilayer dielectric slab waveguide with applications in edge-coupled terahertz photomixer sources,” J. Lightwave Technol. 25(1), 432–439 (2007).CrossRefGoogle Scholar
  17. 17.
    P. Bernardi and R. Cicchetti, “Response of a planar microstrip line excited by an external electromagnetic field,” IEEE Trans. Electromag. Compat. 32(2), 98–105 (1990).CrossRefGoogle Scholar
  18. 18.
    L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE Press, 1994).Google Scholar
  19. 19.
    M. I. Aksun and R. Mittra, “Derivation of closed-form Green’s functions for a general microstrip geometry,” IEEE Trans. Microwave Theory Tech. 40(11), 2055–2062 (1992).CrossRefGoogle Scholar
  20. 20.
    N. Hojjat, S. Safavi-Naeini, and Y. L. Chow, “Numerical computation of complex image Green’s functions for multilayer dielectric media: near-field zone and the interface region,” IEE Proc.-Microw. Antennas Propag. 145(6), 449–454 (1998).CrossRefGoogle Scholar
  21. 21.
    W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).Google Scholar
  22. 22.
    HFSS 10.1, Ansoft Corporation, http://www.ansoft.com.
  23. 23.
    R. E. Collin, Field Theory of Guided Waves, 2nd Ed. (IEEE Press, 1990).Google Scholar
  24. 24.
    S. Matsuura, G. A. Blake, R. A. Wyss, J. C. Pearson, C. Kadow, A. W. Jackson, et al., “A traveling-wave THz photomixer based on angle-tuned phase matching,” Appl. Phys. Lett. 74(19), 2872–2874 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mohammad Neshat
    • 1
  • Daryoosh Saeedkia
    • 1
  • Safieddin Safavi-Naeini
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations