Generation of Bessel Beams at mm- and Sub mm-wavelengths by Binary Optical Elements

  • Y. Z. Yu
  • W. B. Dou


In this paper, binary optical elements (BOE’s) are designed for generating Bessel beams at mm- and sub mm- wavelengths. The design tool is to combine a genetic algorithm (GA) for global optimization with a two-dimension finite-difference time-domain (2-D FDTD) method for rigorous electromagnetic computation. The design process for converting a normally incident Gaussian beam into a Bessel beam is described in detail. Numerical results demonstrate that the designed BOE’s can not only successfully produce arbitrary order Bessel beams, but also have higher diffraction efficiencies when compared with amplitude holograms.


Bessel beams Millimeter and submillimeter-wave Binary optical elements (BOE’s) Genetic algorithm(GA) Finite-difference time-domain(FDTD) 



This work is supported by the Astronomy United Foundation of National Natural Science Foundation of China, Chinese Academy of Sciences (No. 10778602) and the Natural Science Foundation of Fujian Province of China (No.A0610027).


  1. 1.
    J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4(4), 651–654 (1987).ADSGoogle Scholar
  2. 2.
    J. Durnin, J. J. Miceli Jr., and J. H. Eberly, Diffraction-free beams. Phys. Rev. Lett 58(15), 1499–1501 (1987).CrossRefADSGoogle Scholar
  3. 3.
    D. Li, K. Imasaki, S. Miyamoto et al., Conceptual design of bessel beam cavity for free-electron laser. Int. J. Infrared Millim. Waves 27(2), 165–171 (2006).zbMATHCrossRefADSGoogle Scholar
  4. 4.
    S. Monk, J. Arlt, D. A. Robertson et al., The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. Opt. Commun 170, 213–215 (1999).CrossRefADSGoogle Scholar
  5. 5.
    R. J. Mahon, W. Lanigan, J. A. Murphy et al., Novel techniques for millimeter wave imaging systems operating at 100 GHz. Proc. SPIE Int. Soc. Opt. Eng 5789, 93–100 (2005).ADSGoogle Scholar
  6. 6.
    J. Arlt, and K. Dholakia, Generation of high-order Bessel beams by use of an axicon. Opt. Commun 177, 297–301 (2000).CrossRefADSGoogle Scholar
  7. 7.
    J. Turunen, A. Vasara, and A. T. Friberg, Holographic generation of diffraction-free beams. Appl. Opt 27(19), 3959–3962 (1988).ADSGoogle Scholar
  8. 8.
    A. Vasara, J. Turunen, and A. T. Friberg, Realization of general nondiffracting beams with computer-generated holograms. J. Opt. Soc. Am. A 6(11), 1748–1754 (1989).ADSGoogle Scholar
  9. 9.
    A. J. Cox, and D. C. Dibble, Nondiffracting beam from a spatially filtered Fabry-Perot resonator. J. Opt. Soc. Am. A 9(2), 282–286 (1992).ADSGoogle Scholar
  10. 10.
    R. M. Herman, and T. A. Wiggins, Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8(6), 932–942 (1991).ADSMathSciNetGoogle Scholar
  11. 11.
    K. Thewes, M. A. Karim, and A. A. S. Awwal, Diffraction free beam generation using refracting systems. Opt. Laser Technol 23(2), 105–108 (1991).CrossRefADSGoogle Scholar
  12. 12.
    K. M. Iftekharuddin, A. A. S. Awwal, and M. K. Karim, Gaussian-to-Bessel beam transformation using a split refracting system. Appl. Opt 32(13), 2252–2256 (1992).ADSGoogle Scholar
  13. 13.
    W. X. Cong, N. X. Chen, and B. Y. Gu, Generation of nondiffracting beams by diffractive phase elements. J. Opt. Soc. Am. A 15(9), 2362–2364 (1998).CrossRefADSGoogle Scholar
  14. 14.
    G. Y. Zhou, X. C. Yuan, P. Dowd et al., Diffractive optical elements designed by hybrid algorithm for the generation of nondiffraction beams. Proc. SPIE Int. Soc. Opt. Eng 4291, 148–156 (2001).Google Scholar
  15. 15.
    J. Salo, J. Meltaus, E. Noponen et al., Millimeter-wave Bessel beams using computer holograms. Electron. Lett 37(13), 834–835 (2001).CrossRefGoogle Scholar
  16. 16.
    J. Salo, J. Meltaus, E. Noponen et al., Holograms for shaping radio-wave fields. J. Opt. A, Pure Appl. Opt 4(5), S161–S167 (2002).CrossRefADSGoogle Scholar
  17. 17.
    J. Meltaus, J. Salo, E. Noponen et al., Radio-wave beam shaping using holograms, IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, 1305–1308 (2002)Google Scholar
  18. 18.
    J. Meltaus, J. Salo, E. Noponen et al., Millimeter-wave beam shaping using holograms. IEEE Trans. Microwave Theor. Tech 51(4), 1274–1279 (2003).CrossRefGoogle Scholar
  19. 19.
    J. Jiang, and G. P. Nordin, A rigorous unidirectional method for designing finite aperture diffractive optical elements. Opt. Express 7(6), 238–242 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    D. Eclercy, A. Reineix, and B. Jecko, FDTD genetic algorithm for antenna optimization. Microw. Opt. Technol. Lett 16(2), 72–74 (1997).CrossRefGoogle Scholar
  21. 21.
    Je. Kim, T. Yoon, Ja. Kim et al., Design of an ultra wide-band printed monopole antenna using FDTD and genetic algorithm. IEEE Microwave Compon. Lett 15(6), 395–397 (2005).CrossRefGoogle Scholar
  22. 22.
    R. W. Gerchberg, and W. O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35(2), 227–246 (1972).Google Scholar
  23. 23.
    B. Gu, and G. Yang, On the phase retrieval problem in optical and electronic microscopy. Acta Opt. Sin 1(6), 517–522 (1981).Google Scholar
  24. 24.
    D. A. Pommet, M. G. Moharam, and E. Gram, Limits of scalar diffraction theory for diffractive phase elements. J. Opt. Soc. Am. A 11(6), 1827–1834 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    D. Feng, Y. B. Yan, G. F. Jin et al., Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm. J. Opt. Soc. Am. A 20(9), 1739–1745 (2003).CrossRefGoogle Scholar
  26. 26.
    K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media. IEEE Trans. Antennas Propag AP-14(3), 302–307 (1966).ADSGoogle Scholar
  27. 27.
    J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys 114(2), 185–200 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    R. L. Haupt, An introduction to genetic algorithms for electromagnetics. IEEE Antennas Propag. Mag. (USA) 37(2), 7–15 (1995).CrossRefADSGoogle Scholar
  29. 29.
    D. S. Weile, and E. Michielssen, Genetic algorithm optimization applied to electromagnetics: A review. IEEE Trans. Antennas Propag 45(3), 343–353 (1997).CrossRefADSGoogle Scholar
  30. 30.
    G. Zhou, Y. Chen, Z. Wang, and H. Song, Genetic local search algorithm for optimization design of diffractive optical elements. Appl. Opt 38(20), 4281–4290 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Lab of Millimeter WavesSoutheast UniversityJiangsuChina
  2. 2.School of ScienceQuanzhou Normal UniversityFujianChina

Personalised recommendations