Radiation Properties of Carbon Nanotubes Antenna at Terahertz/Infrared Range

  • Yue Wang
  • Qun Wu
  • Wei Shi
  • Xunjun He
  • Xiaofang Sun
  • Tailong Gui
Article

Abstract

The geometric structure and the terahertz/infrared radiation characteristics of carbon nanotubes dipole antenna arrays have been investigated by CST MICROWAVE STUDIO based on finite integral methods. In terahertz and infrared frequency span, the antenna properties such as electrical field distributions, scattering parameters, standing wave ratio, gain, and two dimension directivity patterns are discussed. Our results show that N × N antenna arrays have higher radiation efficiency than single carbon nanotube dipole antenna.

Keywords

Carbon nanotube Terahertz/infrared Antenna arrays 

References

  1. 1.
    W. A. de Heer, A. Châtelain and D. Ugarte, A carbon nanotube field-emission electron source, Science 270, 1179–1180 (1995).CrossRefADSGoogle Scholar
  2. 2.
    S. Li, Z. Yu, and S. F. Yen, et al., Carbon nanotube transistor operation at 2.6 GHz, Nano Lett. 4, 753–756 (2004).CrossRefGoogle Scholar
  3. 3.
    P. J. Burke, An RF circuit model for carbon nanotubes, IEEE Trans. Nanotechnol. 2, 55–58 (March 2003).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, K. Kempa, B. Kimball, et al., Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes, Appl. Phys. Lett. 85(13), 2607–2609 (2004).CrossRefADSGoogle Scholar
  5. 5.
    S. D. Li, Zhen Yu, and C. Rutherglen, et al., Electrical Properties of 0.4 cm Long Single Walled Carbon Nanotubes, Nano Lett. 4(10), 2003–2007 (2004).CrossRefGoogle Scholar
  6. 6.
    A. Javey, P. F. Qi, Q. Wang, et al., Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography, PNAS. 101(37), 13408–13410 (2004).CrossRefADSGoogle Scholar
  7. 7.
    M. Kusunoki, T. Suzuki, and K. Kaneko, et al., Formation of self-aligned carbon nanotube films by surface decomposition of silicon carbide, Phil. Mag. Lett. 79, 153–161 (1999).CrossRefGoogle Scholar
  8. 8.
    H. Murakami, M. Hirakawa, C. Tanaka and H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters, Appl. Phys. Lett. 76, 1776–1778 (2000).CrossRefADSGoogle Scholar
  9. 9.
    X. C. Zhang, Y. Jin and X. F. Ma, Coherent measurement of THz optical rectification from electro_optic crystals, Appl. Phys. Lett. 61, 2764–2766 (1992).CrossRefADSGoogle Scholar
  10. 10.
    A. Nahata, A. S. Weling, and T. F. Heinz, A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling, Appl. Phys. Lett. 69, 2321–2323 (1996).CrossRefADSGoogle Scholar
  11. 11.
    A. Bonvalet, M. Joffre, and J. L. Martin, et al.,Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate, Appl. Phys. Lett. 67, 2907–2909 (1995).CrossRefADSGoogle Scholar
  12. 12.
    B. I. Greene, J. F. Federici, and D. R. Dykaar, et al., Interferometric characterization of 160 fs far-infrared light pulses, Appl. Phys. Lett. 59(8), 893–895 (1991).CrossRefADSGoogle Scholar
  13. 13.
    Q. Wu and X.-C. Zhang, Ultrafast electro-optic field sensors, Appl. Phys. Lett. 68(12), 1604–1606 (1996).CrossRefADSGoogle Scholar
  14. 14.
    Y. Cai, I. Brener, and J. Lopata, et al., Coherent Terahertz Radiation Detection: Direct Comparison between Free-Space Electro-optic Sampling and Antenna Detection, Appl. Phys. Lett. 73(4), 444–446, (1998).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yue Wang
    • 1
    • 3
  • Qun Wu
    • 2
  • Wei Shi
    • 3
  • Xunjun He
    • 1
  • Xiaofang Sun
    • 3
  • Tailong Gui
    • 1
  1. 1.Harbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Harbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.Xi’an University of TechnologyXi’anPeople’s Republic of China

Personalised recommendations