Advertisement

International Journal of Infrared and Millimeter Waves

, Volume 26, Issue 9, pp 1217–1240 | Cite as

Terahertz BWO-Spectrosopy

  • B. Gorshunov
  • A. Volkov
  • I. Spektor
  • A. Prokhorov
  • A. Mukhin
  • M. Dressel
  • S. Uchida
  • A. Loidl
Review Paper

Abstract

Modern Terahertz-subTerahertz (THz-subTHz) spectrometers, based on continuously frequency-tunable coherent sources of radiation, the backward-wave oscillators (BWOs), are described which cover the frequencies v = 1 cm−1 − 50 cm−1 (0.03 − 1.5 THz) and allow for measurements at temperatures 2 − 1000 K, also in magnetic fields. They allow for direct determination of spectra of any optical parameter of a material at millimeter-submillimeter wavelengths, the domain where infrared or microwave spectrometers encounter serious methodological difficulties. We report on new technical abilities of the quasioptical BWO-spectrometers and discuss their main components. We demonstrate abilities of the THz-subTHz BWO-spectroscopy by presenting some latest results on measurements of dielectric, conducting, superconducting and magnetic materials.

Keywords:

Terahertz quasioptical spectroscopy backward-wave oscillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    [1] Kozlov G.V., Volkov A.A. Coherent Source Submillimeter Wave Spectroscopy. Topics in Applied Physics, 74, p.51, ed. G.Gruner, (Springer-Verlag, 1998).Google Scholar
  2. [2]
    [2] M.Born, E.Wolf. Principles of Optics, 6th ed. (Cambridge University Press, Cambridge 1999).Google Scholar
  3. [3]
    [3] A.Schwartz et al. Resonant techniques for studying the complex electrodynamic response of conducting solids in the millimeter and submillimeter wave spectral range. Rev. Sci. Instrum., 66, 2943 (1995).CrossRefGoogle Scholar
  4. [4]
    [4] S.Mair et al. Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer. Appl. Phys. Lett. 84, 1219 (2004).CrossRefGoogle Scholar
  5. [5]
    [5] D. Van der Marel, A.Tsvetkov. Transverse optical plasmons in ordered and disordered Josephson-coupled superconducting multilayers. Czech. J. Phys. 46, 3165 (1996).Google Scholar
  6. [6]
    [6] T.Kakeshita et al. Transverse Josephson plasma mode in T* cuprate superconductors. Phys. Rev. Lett. 86, 4140 (2001).CrossRefPubMedGoogle Scholar
  7. [7]
    [7] V.Tikhonov, A.Volkov. Separation of water into its ortho and para isomers. Science 296, 2363 (2002).CrossRefPubMedGoogle Scholar
  8. [8]
    [8] A. Balbashov et al. Submillimeter spectroscopy of antiferromagnetic dielectrics: Rare-earth orthoferrites. In “High Frequency Processes in Magnetic Materials”, ed. G.Srinivasan, A.Slavin (World Scientific, Singapore 1995); J.van Slageren et al. Frequency-domain magnetic resonance spectroscopy of molecular magnetic materials. Phys. Chem. Chem. Phys. 5, 3837 (2003).Google Scholar
  9. [9]
    [9] M.Dressel et al. Direct Observation of Quantum Tunneling and Relaxation in Mn12ac. Phys. Rev. B 67, 060405 (2003).CrossRefGoogle Scholar
  10. [10]
    [10] O.Ryabova et al. Unpublished.Google Scholar
  11. [11]
    [11] B.Gorshunov et al. Measurement of electrodynamic parameters of superconducting films in far-infrared and submillimeter frequency ranges. Int. J. IRMMW 14, 683 (1993).Google Scholar
  12. [12]
    [12] E.O.Wollan and W.C.Koehler, Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]Mno3. Phys.Rev., 100, 545 (1955).CrossRefGoogle Scholar
  13. [13]
    [13] P.-G. de Gennes, Effects of double exchange in magnetic crystals. Phys. Rev., 118, 141 (1960)CrossRefGoogle Scholar
  14. [14]
    [14] E. Dagotto, et al., Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep., 344, 1 (2001).CrossRefGoogle Scholar
  15. [15]
    [15] A.A.Mukhin, et al., Antiferromagnetic resonsnce in the canted phase of La1-xCaxMnO3: experimental evidence against electronic phase separation. Europhys. Lett., 49, 514 (2000).CrossRefGoogle Scholar
  16. [16]
    [16] A.Pimenov, et al., High-field antiferromagnetic resonance in single-crystalline La0.95Sr0.05MnO3: Experimental evidence for the existence of a canted magnetic structure. Phys. Rev. B, 62, 5685 (2000).CrossRefGoogle Scholar
  17. [17]
    [17] D.Ivannikov, et al., High-field ESR spectroscopy of the spin dynamics in La1-xCaxMnO3 (x<0.175). Phys. Rev. B, 65, 214422 (2002).CrossRefGoogle Scholar
  18. [18]
    [18] J.R.Friedman et al., Macroscopic measurements of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830 (1996)CrossRefPubMedGoogle Scholar
  19. [19]
    [19] A.A.Mukhin, et al., Submillimeter spectroscopy of Mn12 magnetic cluster. Europhys. Lett., 44, 778 (1998).CrossRefGoogle Scholar
  20. [20]
    [20] A.A. Mukhin, et al., Submillimeter spectroscopy of electronic transitions and macroscopic quantum tunneling of magnetization in molecular nanocluster. Physics ] Uspekhi, 34, 1306 (2002).Google Scholar
  21. [21]
    [21] S.Vontragool et al., Asymmetric lineshape due to inhomogeneous broadening of the crystal-field transitions in Mn12 acetate single crystals. Phys. Rev. B, 69, 104410 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • B. Gorshunov
    • 1
  • A. Volkov
    • 1
  • I. Spektor
    • 1
  • A. Prokhorov
    • 1
  • A. Mukhin
    • 1
  • M. Dressel
    • 2
  • S. Uchida
    • 3
  • A. Loidl
    • 4
  1. 1.A.M. Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.I. Physikalisches InstitutUniversität StuttgartStuttgartGermany
  3. 3.University of TokyoTokyoJapan
  4. 4.Institute of PhysicsUniversity of AugsburgAugsburgGermany

Personalised recommendations