High Power Gyro-Devices for Plasma Heating and Other Applications

  • Manfred Thumm
Review Paper


Gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 1 MW gyrotrons employing synthetic diamond output windows is 5 s at 110 GHz (CPI and JAERI-TOSHIBA), 12 s at 140 GHz (FZK-CRPP-CEA-TED) and 10 s at 170 GHz (GYCOM and JAERI-TOSHIBA), with efficiencies slightly above 30%. Total efficiencies of 45–50 % have been obtained using single-stage depressed collectors (SDC). The energy world record of 160 MJ (0.89 MW at 180 s pulse length and 140 GHz) at power levels higher than 0.8 MW has been achieved by the European FZK-CRPP-CEA-TED collaboration at FZK. Operation at the 1st and the 2nd harmonic of the EC frequency enables gyrotrons to act as medium power step-tunable mm- and sub-mm wave sources in the frequency range from 38 GHz (fundamental) to 889 GHz (2nd harmonic) for plasma diagnostics, EC plasma discharges for generation of multi-charged ions, high-frequency broadband electron paramagnetic resonance (EPR) spectroscopy and medical applications. Gyrotrons have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f ≥ 24 GHz, Pout = 4–50 kW, CW, η ≥ 30%. Future applications which await the development of novel high-power gyro-amplifiers include high resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of gyro-devices and their applications.

Key words:

Gyrotron Gyro-Amplifiers Electron Cyclotron Resonance Heating Plasma Diagnostics Electron Cyclotron Resonance Ion Source Electron Paramagnetic Resonance Millimeter Wave Materials Processing Radar Satellite Communications Linear Collider 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    [1] Granatstein, V.L., I. Alexeff, eds., “High-power microwave sources”, Artech House, Boston, London (1987).Google Scholar
  2. [2]
    [2] Benford, J., J. Swegle, “High-power microwave sources”, Artech House, Boston, London (1992). Google Scholar
  3. [3]
    [3] Edgcombe, C.J., ed., “Gyrotron oscillators - their principles and practice”, Taylor & Francis, London (1993).Google Scholar
  4. [4]
    [4] Kartikeyan, M.V., E. Borie, M.K.A. Thumm, “Gyrotrons - High power microwave and millimeter wave technology”, Springer, Berlin (2004).Google Scholar
  5. [5]
    [5] Nusinovich, G., “Introduction to the physics of gyrotrons”, The Johns Hopkins University Press, Baltimore and London (2004).Google Scholar
  6. [6]
    [6] Goldenberg, A.L., G.G. Denisov, V.E. Zapevalov, A.G. Litvak, V.A. Flyagin, Radiophys. and Quantum Electronics, 39, 423–446 (1996).Google Scholar
  7. [7]
    [7] Gold, S.H., G.S. Nusinovich, Rev. Scientific Instr., 68, 3945–3974 (1997).Google Scholar
  8. [8]
    [8] Granatstein, V.L., B. Levush, B.G. Danly, R.K. Parker, IEEE Trans. on Plasma Science, PS-25, 1322–1335 (1997).Google Scholar
  9. [9]
    [9] Petelin, M.I., IEEE Trans. on Plasma Science, PS-27, 294–302 (1999).Google Scholar
  10. [10]
    [10] Felch, K.L., B.G. Danly, H.R. Jory, K.E. Kreischer, W. Lawson, B. Levush, R.J. Temkin, Proc. of the IEEE, 87, 752–781 (1999).Google Scholar
  11. [11]
    [11] Thumm, M., Nucl. Instr. Methods Phys. Res. A482, 186–194 (2002).Google Scholar
  12. [12]
    [12] Chu, K.R., Rev. Mod. Phys., 76, 489–540 (2004).Google Scholar
  13. [13]
    [13] Gapanov-Grekhov, A.V., V.L. Granatstein, eds., “Applications of high-power microwaves”, Artech House, Boston, London (1994).Google Scholar
  14. [14]
    [14] Thumm, M., in “Generation and Application of high power microwaves”, eds. R.A. Cairns and A.D.R. Phelps, SUSSP 48, Inst. of Physics Publishing, Bristol, Philadelphia, pp. 305–323 (1997).Google Scholar
  15. [15]
    [15] Thumm, M., Int. J. infrared and Millimeter Waves, 22, 377–386 (2001).Google Scholar
  16. [16]
    [16] Felch, K., H. Huey, H. Jory, J. Fusion Energy, 9, 59–75 (1990).Google Scholar
  17. [17]
    [17] Thumm, M., Fusion Engineering and Design, 66–68, 69–90 (2002).Google Scholar
  18. [18]
    [18] Thumm, M., “State-of-the-Art of Gyro-Devices and Free Electron Masers, Update 2004, Report FZKA 7097, Forschungszentrum Karlsruhe (2005).Google Scholar
  19. [19]
    [19] Flyagin, V.A., A.V. Gaponov, M.I. Petelin, V.K. Yulpatov, IEEE Trans. Microwave Theory and Techniques, MTT-25, 514–521 (1977).Google Scholar
  20. [20]
    [20] Luce, T.C., IEEE Trans. on Plasma Science, PS-30, 734–754 (2002).Google Scholar
  21. [21]
    [21] Erckmann, V., G. Dammertz, D. Dorst, L. Empacher, W. Förster, G. Gantenbein, T. Geist, W. Kasparek, H.P. Laqua, G.A. Müller, M. Thumm, M. Weissgerber, H. Wobig, IEEE Trans. on Plasma Science, PS-27, 538–546 (1999).Google Scholar
  22. [22]
    [22] Thumm, M.K., W. Kasparek, IEEE Trans. on Plasma Science, PS-30, 755–786 (2002).Google Scholar
  23. [23]
    [23] Thumm, M, Diamond Related Mater. 10, 1692–1699 (2001).Google Scholar
  24. [24]
    [24] Denisov, G.G., V.E. Zapevalov, A.G. Litvak, V.E. Myasnikov, Radio-physics and Quantum Electronics, 46, 757–768 (2003).Google Scholar
  25. [25]
    [25] K. Sakamoto, A. Kasugai, Y. Ikeda, K. Hayashi, K. Takahasi, S. Moriyama, M. Seki, T. Kariya, Y. Mitsunaka, T. Fujii, T. Imai, Nucl. Fusion, 43, 729–737 (2003).Google Scholar
  26. [26]
    [26] Alberti, S., A. Arnold, E. Borie, G. Dammertz, V. Erckmann, P.Garin, E. Giguet, S. Illy, G. LeCloarec, Y. LeGoff, R. Magne, G. Michel, B. Piosczyk, M. Thumm, C. Tran, M.Q. Tran, D. Wagner, Fusion Engineering and Design, 53, 387–397 (2001).Google Scholar
  27. [27]
    [27] Dammertz, G., S. Alberti, A. Arnold, E. Borie, V. Erckmann, G. Gantenbein, E. Giguet, R. Heidinger, J.P. Hogge, S. Illy, W. Kasparek, K. Koppenburg, M. Kuntze, H.P. Laqua, G. LeCloarec, Y. LeGoff, W. Leonhardt, C. Lievin, R. Magne, G. Michel, G. Müller, G. Neffe, B. Piosczyk, M. Schmid, K. Schwörer, M.K. Thumm, M.Q. Tran, IEEE Trans. on Plasma Science, PS-30, 808–818 (2002).Google Scholar
  28. [28]
    [28] Dammertz, G., S. Alberti, D. Fasel, E. Giguet, K. Koppenburg, M. Kuntze, F. Legrand, W. Leonhardt, C. Lievin, G. Müller, G. Neffe, B. Piosczyk, M. Schmid, A. Sterk, M. Thumm, M.Q. Tran, A.G.A. Verhoeven, Fusion Engineering and Design, 66–68, 497–502 (2003).Google Scholar
  29. [29]
    [29] Iatrou, C.T., O. Braz, G. Dammertz, S. Kern, M. Kuntze, B. Pioszyk, M. Thumm, IEEE Trans. on Plasma Sciences, PS-25, 470–479 (1997).Google Scholar
  30. [30]
    [30] Zapevalov, V.E., A.B. Pavelyev, V.I. Khizhnyak, Radiophysics Quantum Electronics, 43, 671–674 (2000).Google Scholar
  31. [31]
    [31] Piosczyk, B., A. Arnold, G. Dammertz, O. Dumbrajs, M. Kuntze, M.K. Thumm, IEEE Trans. on Plasma Science, PS-30, 819–827 (2002).Google Scholar
  32. [32]
    [32] Thumm, M., A. Arnold, E. Borie, O. Braz, G. Dammertz, O. Dumbrajs, K. Koppenburg, M. Kuntze, G. Michel, B. Piosczyk, Fus. Eng. Design, 53, 407–421 (2001).Google Scholar
  33. [33]
    [33] Zapevalov, V.E, A.A. Bogdashov, G.G. Denisov, A.N. Kuftin, V.K. Lygin, M.A. Moiseev, A.V. Chirkov, Radiophysics and Quantum Electronics, 47, 396–404 (2004).Google Scholar
  34. [34]
    [34] Leuterer, F., K. Kirov, F. Monaco, M. Münich, H. Schütz, F. Ryter, D. Wagner, R. Wilhelm, H. Zohm, T. Franke, K. Voigt, M. Thumm, R. Heidinger, G. Dammertz, K. Koppenburg, G. Gantenbein, H. Hailer, W. Kasparek, G.A. Müller, A. Bogdashov, G. Denisov, V. Kurbatov, A. Kuftin, A. Litvak, S. Malygin, E. Tai, V. Zapevalov, Fusion Engineering and Design, 66–68, 537–542 (2003).Google Scholar
  35. [35]
    [35] Idehara, T., I. Ogawa, K. Kawahata, H. Iguchi, K. Matsuoka, Int. J. of Infrared and Millimeter Waves, 25, 1567–1579 (2004).Google Scholar
  36. [36]
    [36] Idehara, T., I. Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, K. Yoshida, IEEE Trans. Plasma Science, 27, 340–354 (1999).Google Scholar
  37. [37]
    [37] Flyagin, V.A., A.N. Kuftin, A.G. Luchinin, G.S. Nusinovich, T.B. Pankratova, V.E. Zapevalov, Proc. Joint IAEA Techn. Committee Meeting on ECE and ECRH (EC-7), Hefei, P.R. China, 355–372 (1989).Google Scholar
  38. [38]
    [38] Gloubev, S.V., Yu. Ya. Platanov, S.V. Razin, V.G. Zorin, J. X-Ray Science and Technology, 6, 244–248 (1996).Google Scholar
  39. [39]
    [39] Golubev, S.V., S.V. Razin, V.G. Zorin, Rev. Scientific Instruments, 69, 634–636 (1998).Google Scholar
  40. [40]
    [40] Feher, L., M. Thumm, Proc. SPIE - 15th Annual Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls, Intense Microwave Pulses VIII, Orlando, USA, SPIE Vol. 4371, pp. 99–110 (2001).Google Scholar
  41. [41]
    [41] Samsonov, S.V., G.G. Denisov, V.L. Bratman, A.A. Bogdashov, M.Yu. Glyavin, A.G. Luchinin, V.K. Lygin, MK. Thumm, IEEE Trans. on Plasma Science, PS-32, 884–889 (2004).Google Scholar
  42. [42]
    [42] Tatsukawa, T., T. Maeda, H. Sasai, T. Idehara, M. Mekata, T. Saito, T. Kanemaki, Int. J. Infrared and Millimeter Waves, 16, 293–305 (1995).Google Scholar
  43. [43]
    [43] Mitsudo, S., T. Aripin, T. Shirai, T. Matsuda, T. Kanemaki, T. Idehara, Int. J. of Infrared and Millimeter Waves, 21, 661–676 (2000).Google Scholar
  44. [44]
    [44] Gerfen, G.J., L.R. Becerra, D.A. Hall, R.G. Griffin, R.J. Temkin, D.J. Singel, J. Chem. Phys., 102, 9494–9497 (1995).Google Scholar
  45. [45]
    [45] Petelin, M.I., G. Caryotakis, A.A. Yunakovsky, CP 474, High Energy Density Microwaves, ed. R.M. Phillips, The American Institute of Physics, pp. 304–315 (1999).Google Scholar
  46. [46]
    [46] Blank, M., K. Felch, B.G. James, P. Borchard, P. Cahalan, T.S. Chu, H. Jory, B.G. Danly, B. Levush, J.P., Calame, K.T. Nguyen, D.E. Pershing, IEEE Trans. on Plasma Science, PS-30, 865–875 (2002).Google Scholar
  47. [47]
    [47] Chu, K.R., IEEE Trans. on Plasma Science, PS-30, 903–908 (2002).Google Scholar
  48. [48]
    [48] Denisov, G.G., V.L. Bratman, A.D.R. Phelps, S.V. Samsonov, IEEE Trans. on Plasma Science, PS-26, 508–518 (1998).Google Scholar
  49. [49]
    [49] Granatstein, V.L., W. Lawson, IEEE Trans. on Plasma Science, PS-24, 648–665 (1996).Google Scholar
  50. [50]
    [50] Tatsukawa, T., A. Doi, M. Teranaka, H. Takashima, F. Goda, T. Idehara, I. Ogawa, S. Mitsudo, T. Kanemaki, Int. J. of Infrared and Millimeter Waves, 21, 1155–1167 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Manfred Thumm
    • 1
    • 2
  1. 1.Forschungszentrum Karlsruhe, Association Euratom—FZKInstitut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)KarlsruheGermany
  2. 2.Universität KarlsruheInstitut für Höchsfrequenztechnik und Elektronik (IHE)Kaiserstr. 12KarlsruheGermany

Personalised recommendations