Magneto-Optical Measurement of Organic Conductor Using Rotational Cavity System

  • H. Ohta
  • M. Kimata
  • K. Koyama
  • Y. Oshima
  • M. Motokawa
  • H. Nishikawa
  • K. Kikuchi
  • I. Ikemoto
Original Article
  • 27 Downloads

Abstract

We have developed a new magneto-optical measurement system using a rotational cavity system equipped with a millimeter vector network analyzer and a 14 T solenoid type super conducting magnet. The measurement can be performed in the transmission configuration down to 1.6 K. The results of the precise angular dependence measurement of quasi-one-dimensional organic conductor (DMET)2I3 using the new system are shown, and its Fermi surface will be discussed in connection with the previous reports.

Keywords:

Optical detected magnetic resonance Organic superconductor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    [1] S. Hill, “Semiclassical description of cyclotron resonance in quasi-two-dimensional organic conductors: Theory and experiment”, Phys. Rev. B 55 (1997) 4931.ADSGoogle Scholar
  2. [2]
    [2] A. Ardavan, J.M. Schrama, S.J. Blundell, J. Singleton, W. Hayes, M. Kurmoo, P. Day, P. Goy, “New kind of Magneto-Optical Resonance Observed in the Organic Metal α-(BEDT-TTF)2 KHg(SCN)4”, Phys. Rev. Lett. 81 (1998) 713.CrossRefADSGoogle Scholar
  3. [3]
    [3] A.E. Kovalev, S. Hill, J.S. Qualls, “Determination of the Fermi velocity by angle-dependent periodic orbit resonance measurements in the organic conductor α-(BEDT-TTF)2 KHg(SCN)4”, Phys. Rev. B 66 (2002) 134513.ADSGoogle Scholar
  4. [4]
    [4] Y. Oshima, H. Ohta, K. Koyama, M. Motokawa, H.M. Yamamoto, R. Kato, M. Tamura, Y. Nishio, K. Kajita, “Fermi Surface Study of Quasi-Two Dimensional Organic Conductors by Magnetooptical Measurements”, J. Phys. Soc. Jpn. 72 (2003) 143.Google Scholar
  5. [5]
    [5] Y. Oshima, M. Kimata, K. Kishigi, H. Ohta, K. Koyama, M. Motokawa, H. Nishikawa, K. Kikuchi, I. Ikemoto, “Fermi surface study of quasi-one-dimensional metals using magneto-optical techniques”, Phys. Rev. B 68 (2003) 54526.CrossRefADSGoogle Scholar
  6. [6]
    [6] K. Koyama, M. Yoshida, H. Nojiri, T. Sakon, D. Li, T. Suzuki, M. Motokawa, “Antiferromagnetic Resonance and Magnetic Structure of GdAs”, J. Phys. Soc. Jpn. 69 (2000) 1521.Google Scholar
  7. [7]
    [7] S. Uji, C. Terakura, T. Terashima, H. Aoki, H. Nishikawa, I. Ikemoto, K. Kikuchi, “Coherent-Incoherent Transition in the Electronic Conduction for a Quasi-one-dimensional Organic Conductor (DMET)2I3”, in 4th Int. Symposium on Advanced Physical Fields: Quantum Phenomena in Advanced Materials at High Magnetic Fields, edited by G. Kido (Tsukuba, Japan, 1999) p.295.Google Scholar
  8. [8]
    [8] Y. Oshima, M. Kimata, K. Kishigi, H. Ohta, K. Koyama, M. Motokawa, H. Nishikawa, K. Kikuchi, I. Ikemoto, “Observation of high-order quasi-one-dimensional periodic orbit resonance in (DMET)2I3 and its fermi surface.”, Physica B 346–347 (2004) 387.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • H. Ohta
    • 1
    • 2
  • M. Kimata
    • 3
  • K. Koyama
    • 4
  • Y. Oshima
    • 3
    • 5
  • M. Motokawa
    • 4
  • H. Nishikawa
    • 6
  • K. Kikuchi
    • 6
  • I. Ikemoto
    • 6
  1. 1.Molecular Photoscience Research CenterKobe UniversityKobeJapan
  2. 2.Venture Business LaboratoryKobe UniversityKobeJapan
  3. 3.The Graduate School of Science and TechnologyKobe UniversityKobeJapan
  4. 4.High Field Laboratory for Superconducting Materials, Institute for Material ResearchTohoku UniversityKatahira, SendaiJapan
  5. 5.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA
  6. 6.Department of Chemistry, Graduate School of ScienceTokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations