Terahertz Transmission Spectroscopy of Nonpolar Materials and Relationship with Composition and Properties

  • M. Naftaly
  • A. P. Foulds
  • R. E. Miles
  • A. G. Davies
Article

Abstract

Terahertz time-domain spectroscopy is used to study properties of non-polar materials. Terahertz absorption spectra and refractive indices are measured in a number of glasses, lubricating oils, and types of paper. The results are correlated with material properties.

Key words:

terahertz time domain spectroscopy material properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    [1] M.C. Beard, G. M. Turner, C. A. Schmuttenmaer, “Terahertz spectroscopy”, J. Phys. Chem B, vol. 106, 2002, 7146–7159.Google Scholar
  2. [2]
    [2] M. Hangyo, T. Nagashima, S. Nashima, “Spectroscopy by pulsed terahertz radiation”, Meas. Sci. Technol., vol. 13, 2002, 1727–1738.Google Scholar
  3. [3]
    [3] P.Y. Han, X-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy”, Meas. Sci. Technol., vol. 12, 2001, 1747–1756.Google Scholar
  4. [4]
    [4] P.H. Bolivar et al., “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at tcrahertz frequencies”, IEEE Trans. Microwave Theory Tech., vol. 51, 2003, 1062–1066.Google Scholar
  5. [5]
    [5] M.C. Beard el al., “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy”, J. Appl. Phys., vol. 90, 2001, 5915–5923.Google Scholar
  6. [6]
    [6] A. Quema et al., “Identification of potential estrogenic environmental pollutants by terahertz transmission spectroscopy”, Jpn. J. Appl. Phys., vol. 42, 2003, L932–L934.Google Scholar
  7. [7]
    [7] Y. Watanabe el al., “Component analysis of chemical mixtures using terahertz spectroscopic imaging”, Opt. Commun., vol. 234, 2004, 12–129.Google Scholar
  8. [8]
    [8] H. Harde et al., “THz time-domain spectroscopy on ammonia”, J. Phys. Chem. A, vol. 105, 2001, 6038–6047.Google Scholar
  9. [9]
    [9] G. Zhao et al., “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instr., vol. 73, 2002, 1715–1719.Google Scholar
  10. [10]
    [10] T. Ohsaka and S. Oshikawa, “Effect of OH content on the far infrared absorption and low-energy states in silica glass”, Phys. Rev. B, vol. 57, 1998, 4995–4998.Google Scholar
  11. [11]
    [11] B. E. Hubbard et al., “Infrared and Raman study of two-level systems in fiber optic quality a-SiO2 and a-SiO2:GeO2”, Physica B, vol. 316–317, 2002, 531–534.Google Scholar
  12. [12]
    [12] L. I. Deich, “Far-infxared attenuation in glasses”, Phys. Rev. B, vol. 49, 1994, 109–113.Google Scholar

Copyright information

© Springer Science+Business Media, Inc 2005

Authors and Affiliations

  • M. Naftaly
    • 1
  • A. P. Foulds
    • 1
  • R. E. Miles
    • 1
  • A. G. Davies
    • 1
  1. 1.Institute of Microwaves and Photonics School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK

Personalised recommendations