Skip to main content
Log in

Intelligent Tutoring and the Development of Argumentative Competence

  • Original research
  • Published:
Technology, Knowledge and Learning Aims and scope Submit manuscript

Abstract

This ethnographical study aims to interpret how an intelligent tutorial system, geogebraTUTOR, mediates to the student’s argumentative processes. Data consisted of four geometrical problems proposed to a group of four students aged 16–17. Qualitative analysis of two selected cases led to the identification of the development of argumentative competences by the students, as well as the level of influence produced to them. As regards the influence of geogebraTUTOR on the students, the study revealed that the interactions of tutor–teacher–student produced a significant number of mathematical learning opportunities of ‘thinking strategically’ type; establishing figural inference conjectures and fostering the transition from empirical to deductive argumentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DGS:

Dynamic geometry software

MLO:

Mathematical learning opportunities

ITS:

Intelligent tutorial systems

ggbTUTOR:

GeogebraTUTOR

References

  • Boukafri, K., Ferrer, M., & Planas, N. (2015). Whole class discussion in the context of mathematics problem solving with manipulatives. In Proceedings of the 9th congress of European research in mathematics education. Prague.

  • Brewer, D. J., & Stasz, C. (1996). Enhancing opportunity to learn measures in NCES data. RAND Corporation.

  • Cobb, P., & Whitenack, J. (1996). A method for conducting longitudinal analyses of classroom videorecordings and transcripts. Educational Studies in Mathematics, 30(3), 213–228.

    Article  Google Scholar 

  • Cobo, P. (1998). Análisis de los procesos cognitivos y de las interacciones sociales entre alumnos (16-17) en la resolución de problemas que comparan áreas de superficies planas. Un estudio de casos. (Unpublished doctoral thesis). Universitat Autònoma de Barcelona.

  • Cobo, P., & Fortuny, J. M. (2000). Social interactions and cognitive effects in contexts of area-comparison problem solving. Educational Studies in Mathematics, 42, 115–140.

    Article  Google Scholar 

  • Cobo, P., & Fortuny, J. M. (2007). AgentGeom: un sistema tutorial para el desarrollo de competencias argumentativas de los alumnos a través de la resolución de problemas. Matematicalia: Revista Digital de Divulgación Matemática de La Real Sociedad Matemática Española, 3(3). Retrieved from http://www.matematicalia.net/index.php?option=com_content&task=view&id=407&Itemid=242

  • Cobo, P., Fortuny, J. M., Puertas, E., & Richard, P. R. (2007). AgentGeom: A multiagent system for pedagogical support in geometric proof problems. International Journal of Computers for Mathematical Learning, 12(1), 57–79. doi:10.1007/s10758-007-9111-5.

    Article  Google Scholar 

  • Denzin, N. K. (1970). The research act: A theoretical introduction to sociological methods. Chicago: Aldine.

    Google Scholar 

  • Doorman, M., Drijvers, P., & Gravemeijer, K. (2012). Tool use and the development of the function concept: from repeated calculations to functional thinking. International Journal of Science and Mathematics Education, 10(6), 1243–1267.

    Article  Google Scholar 

  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234. doi:10.1007/s10649-010-9254-5.

    Article  Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine: registres sémiotiques et apprentissages intellectuels. Berne: Peter Lang.

    Google Scholar 

  • Eisenhart, M. A. (1988). The ethnographic research tradition and mathematics education research. Journal for Research in Mathematics Education, 19(2), 99–114. doi:10.2307/749405.

    Article  Google Scholar 

  • Ferrer, M., Fortuny, J. M., & Morera, L. (2014). Efectos de la actuación docente en la generación de oportunidades de aprendizaje matemático. Enseñanza de las Ciencias, 32(3), 385–405. doi:10.5565/rev/ensciencias.1231.

    Google Scholar 

  • Flecha, R. (2000). Sharing words: Theory and practice of dialogic learning. Lanham: Rowman & Littlefield.

    Google Scholar 

  • Gutiérrez, Á. (2005). Aspectos de la investigación sobre aprendizaje de la demostración mediante exploración con software de geometría dinámica. In A. Maz, B. Gómez, & M. Torralbo (Eds.), Proceedings of the Noveno Simposio de la Sociedad Española de Educación Matemática SEIEM (pp. 27–44). Córdoba.

  • Hart, K., Brown, M., & Kuchemann, D. (1981). Children’s understanding of mathematics: 11–16. London: John Murray.

    Google Scholar 

  • Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS environment with tasks designed from a task-technique-theory perspective. International Journal of Computers for Mathematical Learning, 14(2), 121–152. doi:10.1007/s10758-009-9151-0.

    Article  Google Scholar 

  • Kieran, C. (2001). The mathematical discourse of 13-year-old partnered problem solving and its relation to the mathematics that emerges. An International Journal, 46(1), 187–228. doi:10.1023/A:1014040725558.

    Google Scholar 

  • Kuzniak, A., & Richard, P. R. (2014). Spaces for mathematical work: Viewpoints and perspectives. Revista Latinoamericana de Investigación En Matemática Educativa (RELIME), 17(4-I), 5–15. doi:10.12802/relime.13.1741b.

    Article  Google Scholar 

  • Leatham, K. R., Peterson, B. E., Stockero, S. L., & Van Zoest, L. R. (2015). Conceptualizing mathematically significant pedagogical opportunities to build on student thinking. Journal for Research in Mathematics Education, 46(1), 88–124. doi:10.5951/jresematheduc.46.1.0088.

    Article  Google Scholar 

  • Marrades, R., & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1–2), 87–125. doi:10.1023/A:1012785106627.

    Article  Google Scholar 

  • Morera, L. (2013). Contribución al estudio de la enseñanza y del aprendizaje de las isometrías mediante discusiones en gran grupo con el uso de tecnología. (Unpublished doctoral thesis). Universitat Autònoma de Barcelona.

  • Morera, L., Planas, N., & Fortuny, J. M. (2013). Design and validation of a tool for the analysis of whole group discussions in the mathematics classroom. In B. Uhuz (Ed.), Proceedings of the 8th congress of the European society for research in mathematics education. ERME: Antalya, Turkey.

    Google Scholar 

  • Moschkovich, J. N. (2004). Appropriating mathematical practices: A case study of learning to use and explore functions through interaction with a tutor. Educational Studies in Mathematics, 55, 49–80. doi:10.1023/B:EDUC.0000017691.13428.b9.

    Article  Google Scholar 

  • NCTM. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.

    Google Scholar 

  • Planas, N. (Ed.). (2010). Pensar i comunicar matemàtiques. Barcelona: Fundació Propedagògic.

    Google Scholar 

  • Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. Interacting with Computers, 15(5), 665–691. doi:10.1016/S0953-5438(03)00058-4.

    Article  Google Scholar 

  • Richard, P. R. (2004). Raisonnement et stratégies de preuve dans l’enseignement des mathématiques. Berne: Peter Lang.

    Google Scholar 

  • Richard, P. R., Fortuny, J. M., Gagnon, M., Leduc, N., Puertas, E., & Tessier-Baillargeon, M. (2011). Didactic and theoretical-based perspectives in the experimental development of an intelligent tutorial system for the learning of geometry. ZDM—The International Journal on Mathematics Education, 43(3), 425–439. doi:10.1007/s11858-011-0320-y.

    Article  Google Scholar 

  • Richard, P. R., Iranzo, N., Fortuny, J. M., & Puertas, E. (2009). Influence of dynamic geometry and problem solving strategies toward an interactive tutorial system. In World conference on e-learning in corporate, government, healthcare, and higher education (Vol. 2009, pp. 649–658).

  • Rowland, T., & Turner, F. (2008). How shall we talk about “subject knowledge”for mathematics teaching? In M. Joubert (Ed.), Proceedings of the British Society for Research into Learning Mathematics (BSRLM) (Vol. 28, pp. 91–96). Retrieved from http://www.bsrlm.org.uk/IPs/ip28-2/BSRLM-IP-28-2-16.pdf

  • Sfard, A., & Kieran, C. (2001). Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students’ mathematical interactions. Mind, Culture, and Activity, 8(1), 42–76. doi:10.1207/S15327884MCA0801-04.

    Article  Google Scholar 

  • Smith, M. S., & Stein, M. K. (2011). 5 practices for orchestrating productive mathematics discussions. Reston, VA: NCTM.

    Google Scholar 

  • Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268–275.

    Google Scholar 

  • Yackel, E., Cobb, P., & Wood, T. (1991). Small-group interactions as a source of learning opportunities in second-grade mathematics. Journal for Research in Mathematics Education, 22(5), 390–408.

    Article  Google Scholar 

Download references

Acknowledgments

The work reported herein is part of the research project EDU2011-23240, funded by the Spanish Ministry of Education. The authors wish to thank the teachers and students of the Pius Font i Quer secondary school from Manresa for their collaboration and the anonymous reviewers for their useful comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Paneque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paneque, J.J., Cobo, P. & Fortuny, J.M. Intelligent Tutoring and the Development of Argumentative Competence. Tech Know Learn 22, 83–104 (2017). https://doi.org/10.1007/s10758-016-9283-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-016-9283-y

Keywords

Navigation