AgentGeom: a multiagent system for pedagogical support in geometric proof problems

  • Pedro Cobo
  • Josep M. Fortuny
  • Eloi Puertas
  • Philippe R. Richard
Article

Abstract

This paper aims, first, to describe the fundamental characteristics and workings of the AgentGeom artificial tutorial system, which is designed to help students develop knowledge and skills related to problem solving, mathematical proof in geometry, and the use of mathematical language. Following this, we indicate the manner in which a secondary school student can appropriate these abilities through interactions with the system. Our system uses strategic messages of the agent tutor in an argumentative process that collaborates with a student in the construction of a proof.

Keywords

AgentGeom Multiagent system Pedagogical support Geometric proof problem Appropriation Interactions 

References

  1. Aïmeur, E., El-Khoury, S., Fortuny, J. M., & Richard, P. R. (2005). An open architecture to improve the mathematical competences in high school. Actes de la ED-media world conference of association for the advancement of computing in education (pp. 3395–3402). Montréal.Google Scholar
  2. Allen, R. J., & Trilling, L. (1997). Dynamic geometry and declarative geometric programming. In J. R. King, & D. Schattschneider (Eds.), Geometry turned on. Dynamic software in learning, teaching, and research. (pp. 193–197) Washington: MAA Notes Series.Google Scholar
  3. Balacheff, N. (2000). Teaching, an emergent property of eLearning environments. In Proceedings of the international conference on intelligent tutoring systems 2000. Nice. Retrieved at http://www-didactique.imag.fr/Balacheff/TextesDivers/IST2000.html.Google Scholar
  4. Balacheff, N., & Margolinas, C. (2005). Modèle de connaissances pour le calcul de situations didactiques. In A. Mercier, & C. Margolinas (Eds.), Balises pour la didactique des mathématiques (pp. 75–106). Grenoble: La Pensée sauvage.Google Scholar
  5. Brousseau, G. (1997). Theory of didactic situations. Dordrecht: Kluwer Academic Publishers.Google Scholar
  6. Bunt, A., & Conati, C. (2002). Assessing effective exploration in open learning environments using bayesian networks. In Proceedings of the international conference on intelligent tutoring systems 2002. Biarritz. Retreived at http://www.cs.ubc.ca/%7Econati/my-papers/its2002BuntConati.pdf.Google Scholar
  7. Cobo, P., & Fortuny, J. M. (2000). Social interactions and cognitive effects in contexts of area-comparison problem solving. Educational Studies in Mathematics, 42, 115–140.CrossRefGoogle Scholar
  8. Cobo, P. (1998). Análisis de los procesos cognitivos y de las interacciones sociales entre alumnos (16–17) en la resolución de problemas que comparan áreas de superficies planas. Un estudio de casos. Doctoral dissertation. Universitat Autònoma de Barcelona.Google Scholar
  9. Cobo, P. (2004). Disseny d’agents pedagògics intel·ligents per millorar les competències estratègiques de l’alumnat en la resolució de problemes de matemàtiques. Memoria inédita de la llicencia de estudios concedida por el Departament d’Ensenyament de la Generalitat de Catalunya (DOGC, núm. 3926 de 16-7-2003).Google Scholar
  10. Duval, R. (1995). Sémiosis et pensée humaine: registre sémiotique et apprentissages intellectuels. Berne: Peter Lang.Google Scholar
  11. Forman, E. (1996). Learning mathematics as participation in classroom practice: implications of sociocultural theory for educational reform. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 115–130). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  12. Kieran, C. (2001). The mathematical discourse of 13-year-old partnered problem solving and its relation to the mathematics that emerges. Educational Studies in Mathematics, 42, 115–140.Google Scholar
  13. Koedinger, K., & Anderson, J. R. (1993). Reifying implicit planning in geometry: Guidelines for model-based intelligent tutoring system design. In S. P. Lajoie, & S. J. Derry (Eds.), Computers as cognitive tools (pp. 15–46). Hillsdale, NJ: Erlbaum.Google Scholar
  14. Laboratoire Leibniz (2003). Baghera assessment project: Designing an hybrid and emergent educational society. In S. Soury-Lavergne (Ed.), Rapport pour la commission européenne, Programme IST. Grenoble: Les Cahiers du Laboratoire Leibniz n° 81.Google Scholar
  15. Lakatos, I. (1976). Proof and refutations. Cambridge: Cambridge University Press.Google Scholar
  16. Luengo, V. (1999). Cooperative agents to learn mathematical proof. In: P. Kommers, & G. Richards (Eds.), Proceedings of world conference on educational multimedia, hypermedia and telecommunications (p 1632). Chesapeake, VA: AACE.Google Scholar
  17. Matsuda, N., & Okamoto, T. (1998). Diagramatic reasoning for geometry ITS to teach auxiliary line constuction problems. In Proc. of the international conference on intelligent tutoring systems (pp. 244–253). Berlin: Springer.Google Scholar
  18. Moschkovich, J. (2004). Appropriating mathematical practices: a case study of learning to use and explore functions through interaction with a tutor. Educational Studies in Mathematics, 55, 49–80.CrossRefGoogle Scholar
  19. Rabardel, P. (2001). Instrument mediated activity in situations. In: Blandford A., Vanderdonckt J., Gray P. (eds.), People and computers XV—interactions without frontiers (pp. 17–30). Berlin: Springer-Verlag.Google Scholar
  20. Richard, P. R. (2004a). Modélisation du comportement en situation de validation. Berne: Peter Lang.Google Scholar
  21. Richard, P. R. (2004b). L’inférence figurale: un pas de raisonnement discursivo-graphique. Educational Studies in Mathematics, 57(2), 229–263.CrossRefGoogle Scholar
  22. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.Google Scholar
  23. ScreenFlash (2002). Retrieved at http:// www.unflash.com.Google Scholar
  24. Webber, C., Bergia, L., Pesty, S., & Balacheff, N. (2002). The Baghera project: a multi-agent architecture for human learning. In Proceedings of the workshop multi-agent architectures for distributed learning environments (AIED2001) (pp. 12–17). San Antonio.Google Scholar
  25. Winston, P. H. (1992). Artifical intelligence. New York: Addison Wesley.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Pedro Cobo
    • 1
  • Josep M. Fortuny
    • 2
  • Eloi Puertas
    • 3
  • Philippe R. Richard
    • 4
  1. 1.Departament de MatemàtiquesInstitut d’Ensenyament Secundari Pius Font i Quer de ManresaManresaSpain
  2. 2.Departament de Didàctica de la Matemàtica i de les Ciències ExperimentalsBellaterraSpain
  3. 3.Institut d’Investigació en Intel·ligència ArtificialConsell Superior d’Investigacions CientífiquesEspanyaSpain
  4. 4.Département de didactiqueUniversité de MontréalMontrealCanada

Personalised recommendations