Willingness-to-pay to prevent Alzheimer’s disease: a contingent valuation approach

  • Rashmita BasuEmail author


As the prevalence of Alzheimer’s disease (AD) increases, the need to develop effective and well-tolerated pharmacotherapies for the prevention of AD is becoming increasingly important. Understanding determinants and magnitudes of individuals’ preferences for AD prevention programs is important while estimating the benefits of any new pharmacological intervention that targets the prevention of the disease. This paper applied contingent valuation, a method frequently used for economic valuation of goods or services not transacted in the markets, to estimate the willingness-to-pay (WTP) to prevent AD based on the nationally representative Health and Retirement Survey data. The WTP was associated in predictable ways with respondent characteristics. The mean estimated WTP for preventing AD is $155 per month (95 % CI $153–$157) based on interval regression. On average, a higher WTP for the prescription drug for AD prevention was reported by respondents with higher perceived risks, and greater household wealth. The findings provide useful information about determinants and the magnitude of individuals’ preferences for AD prevention drugs for healthcare payers and individual families while making decisions to prevent AD.


Alzheimer’s disease Perceived risk Willingness-to-pay Contingent valuation method Interval regression 

JEL Classification

I18 I19 


  1. Alzheimer’s Disease, Facts & Figures (2011).
  2. Alzheimer’s Disease, Facts & Figures (2012).
  3. Amin, M., & Khondoker, F. A. (2004). Contingent valuation study to estimate the parental willingness-to-pay for childhood diarrhoea and gender bias among rural households in India. Health Research Policy and Systems, 2, 3. doi: 10.1186/1478-4505-2-3.PubMedCrossRefGoogle Scholar
  4. Arana, J. E., & Leon, C. J. (2002). Willingness to pay for health risk reduction in the context of altruism. Health Economics, 11, 623–635. doi: 10.1002/hec.687.PubMedCrossRefGoogle Scholar
  5. Barnighausen, T., Liu, Y., Zhang, X., & Sauerborn, R. (2007). Willingness to pay for social health insurance among informal sector workers in Wuhan, China: A contingent valuation study. BMC Health Services Research, 7, 114. doi: 10.1186/1472-6963-7-114.PubMedCrossRefGoogle Scholar
  6. Bateman, R. J., Xiong, C., Bensnger, T. L., Fagan, A. M., Goate, A., et al. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s Disease. The New England Journal of Medicine, 367, 795–804. doi: 10.1056/NEJMoa1202753.PubMedCrossRefGoogle Scholar
  7. Cameron, T. A. (1988). A new paradigm for valuing non-market goods using referendum data: Maximum likelihood estimation by censored logistic regression. Journal of Environmental Economics and Management, 1988(15), 355–379. doi: 10.1016/0095-0696(88)90008-3.CrossRefGoogle Scholar
  8. Cameron, T. A. (1991). Interval estimates from non-market resource values for referendum contingent valuation surveys. Land Economy, 67, 413–421. doi: 10.2307/3146548.CrossRefGoogle Scholar
  9. Cameron, T. A., & Huppert, D. D. (1989). OLS verses ML estimation of non-market resource values with payment card interval data. Journal of Environmental Economics and Management, 17, 230–246.CrossRefGoogle Scholar
  10. Cawley, J. (2008). Contingent valuation analysis of willingness to pay to reduce childhood obesity. Economics & Human Biology, 6, 281–292. doi: 10.1016/j.ehb.2008.05.003.CrossRefGoogle Scholar
  11. Chestnut, L. G., Keller, L. R., Lambert, W. E., & Rowe, R. D. (1996). Measuring heart patients’ willingness to pay for changes in angina symptoms. Medical Decision Making, 16, 65–77. doi: 10.1177/0272989X9601600115.PubMedCrossRefGoogle Scholar
  12. Chung, S., Mehta, K., Shumway, M., Alvidrez, J., & Perez-Stable, E. J. (2009). Risk perception and preference for prevention of Alzheimer’s disease. Value Health, 12, 450–458.PubMedCrossRefGoogle Scholar
  13. Crimmins, E. M., Kim, J. K., Langa, K. M., & Weir, D. R. (2011). Assessment of cognition using surveys and neuopsychological assessment: The Health and Retirement Study and the Aging Demographics, and Memory Study. The Journals of Gerontology Series B, 66, i162–171. doi: 10.1093/geronb/gbr048.CrossRefGoogle Scholar
  14. Duan, N. (1983). Smearing estimate: A nonparametric retransformation method. American Statistical Association, 78, 605–610. doi: 10.2307/2288126.CrossRefGoogle Scholar
  15. Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S., & Combs, B. (1978). How safe is safe enough? A psychometric study of attitude towards technological risks and benefits. Political Science, 9, 127–152. doi: 10.1007/BF00143739.Google Scholar
  16. Gafni, A. (1998). Willingness to pay: What’s in a name? Pharmacoeconomcs, 14, 465–470. doi: 10.2165/00019053-199814050-00001.CrossRefGoogle Scholar
  17. Grossberg, G. T., Pejovic, V., & Miller, M. L. (2007). Current strategies for the treatment and prevention of Alzheimer’s disease. Primary Psychiatry, 14, 39–54.Google Scholar
  18. Hanemann, W. M., & Kanninen, B. (1999). The statistical analysis of discrete-response CV data. In I. Batemen & K. Willis (Eds.), Valuing environmental preferences. Theory and practice of the contingent valuation method in the US, EU and developing countries (pp. 302–441). Oxford University Press: Oxford.Google Scholar
  19. Hanemann, W. M., Loomis, J., & Kanninen, B. (1991). Statistical efficiency of double bounded dichotomous choice contingent valuation. American Journal of Agricultural Economics, 73, 1255–1263. doi: 10.2307/1242453.CrossRefGoogle Scholar
  20. Hann, M. N., & Weldon, M. (1996). The influence of diabetes, hypertension, and stroke on ethnic differences in physical, and cognitive functioning in an ethnically diverse elderly population. Annals of Epidemiology, 6, 392–398. doi: 10.1016/S1047-2797(96)00062-2.CrossRefGoogle Scholar
  21. Hausman, J. A. (1983). Specification and estimation of simultaneous equation models. In: Z. Griliches & M.D. Intriligator (Eds.), Handbook of econometrics (Vol. I). North-Holland Publishing Company: Amsterdam.Google Scholar
  22. Hebert, L. E., Scherr, P. A., Bienias, J. L., Bennett, D. A., & Evans, D. A. (2003). Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Archives of Neurology, 60, 1119–1122. doi: 10.1001/archneur.60.8.1119.PubMedCrossRefGoogle Scholar
  23. Herzog, A. R., & Wallace, R. B. (1997). Measures of cognitive functioning in the AHEAD study. The Journals of Gerontology Series B, 52, 37–48. doi: 10.1093/geronb/52B.Special_Issue.37.CrossRefGoogle Scholar
  24. Johnson, F. R., Manjunath, R., Mansfield, C. A., Clayton, L. J., Hoerger, T. J., & Zhang, P. (2006). High-risk individuals’ willingness to pay for diabetes risk-reduction programs. Diabetes Care, 29, 1351–1356. doi: 10.2337/dc05-2221.PubMedCrossRefGoogle Scholar
  25. Juster, F. T., & Suzman, R. (1995). An overview of the health and retirement study. Journal of Human Resources, 30(Suppl), S7–S56. doi: 10.2307/146277.CrossRefGoogle Scholar
  26. Kasperson, R. E., Renn, O., Slovic, P., Brown, H. S., et al. (1988). The social amplification of risk: A conceptual framework. Risk analysis, 8, 177–187. doi: 10.1111/j.1539-6924.1988.tb01168.x.CrossRefGoogle Scholar
  27. Klose, T. (1999). Contingent valuation method in health care. Health Policy, 47, 97–123. doi: 10.1016/S0168-8510(99)00010-X.PubMedCrossRefGoogle Scholar
  28. Langa, K.M., Kabeto, M., Weir, D. (2010). Report on race and cognitive impairment using HRS in 2010 Alzheimer’s disease facts and figures. Retrieved July 12, 2010 from
  29. Lewin Group (2004) Saving lives, saving money: Dividends for American investing in Alzheimer’s research. Retrieved January, 2012 from
  30. McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society, 42, 109–142.Google Scholar
  31. Milligan, M., Bohara, A., & Pagan, J. (2010). Assessing willingness to pay for cancer prevention. International Journal of Health Care Finance and Economics, 10, 301–314. doi: 10.1007/s10754-010-9082-2.PubMedCrossRefGoogle Scholar
  32. Narbro, K., & Sjostrom, L. (2000). Willingness to pay for obesity treatment. International Journal of Technology Assessment in Health Care, 16, 50–59. doi: 10.1017/S0266462300016159.PubMedCrossRefGoogle Scholar
  33. Nguyen, T., Jakus, P. M., Riddel, M., & Shaw, W. D. (2010). An empirical model of perceived mortality risks for selected U.S Arsenic hot spots. Risk Analysis, 30, 1550–1562. doi: 10.1111/j.1539-6924.2010.01450.x.PubMedCrossRefGoogle Scholar
  34. O’brien, B., Georee, R., Gani, A., Torrance, G., Pauly, M., Erder, H., et al. (1998). Assessing the value of a new pharmaceutical: A feasibility study of contingent valuation in managed care. Medical Care, 36, 370–384. doi: 10.1097/00005650-199803000-00013.PubMedCrossRefGoogle Scholar
  35. Oremus, M., Tarride, J. E., Clayton, N., & Raina, P. (2009). Support for a tax increase to provide unrestricted access to an Alzheimer’s disease medication: A survey of the general public in Canada. BMC Health Services Research, 9, 246. doi: 10.1186/1472-6963-9-246.PubMedCrossRefGoogle Scholar
  36. Prosser, L. A., Ray, G. T., O‘Brien, M., Kleinman, K., Santoli, J., & Lieu, T. A. (2004). Preferences and willingness to pay for health states prevented by pneumococcal conjugate vaccine. Pediatrics, 113, 283–290. doi: 10.1542/peds.113.2.283.PubMedCrossRefGoogle Scholar
  37. Roux, L., Ubach, C., Donaldson, C., & Ryan, M. (2004). Valuing the benefits of weight loss programs: An application of the discrete choice experiment. Obesity Research, 12, 1342–1351. doi: 10.1038/oby.2004.169.PubMedCrossRefGoogle Scholar
  38. Sloane, P. D., Zimmerman, S., Suchindran, C., Reed, P., Wang, L., Boustani, M., et al. (2002). The public health impact of Alzheimer’s disease, 2000–2050: Potential implication for treatment advances. Annual Review of Public Health, 23, 213–231. doi: 10.1146/annurev.publhealth.23.100901.140525.PubMedCrossRefGoogle Scholar
  39. Slovic, P., Fischhoff, B., Lichtenstein, S., & Roe, F. J. C. (1978). Perceived Risks: Psychological factors and social implications [and discussion]. Proceedings of the Royal Society of London, 376, 17–34. doi: 10.1098/rspa.1981.0073.Google Scholar
  40. Smith, V. K., Taylor, D. H., & Sloan, F. A. (2001). Longevity expectations and death: Can people predict their own demise. American Economic Review, 91, 1126–1134. doi: 10.1257/aer.91.4.1126.CrossRefGoogle Scholar
  41. Society of Actuaries (2012). Key findings and issues: Longevity, 2011 risks and process of retirement survey report. Retrieved January, 2013 from
  42. Taylor, D. H, Jr, & Sloan, F. A. (2000). How much do Alzheimer’s disease cost medicare? Journal of the American Geriatrics Society, 48, 639–646.PubMedGoogle Scholar
  43. Venkatachalam, L. (2004). The contingent valuation method: A review. Environmental Impact Assessment Review, 24, 89–124. doi: 10.1016/S0195-9255(03)00138-0.CrossRefGoogle Scholar
  44. Viscusi, W. K. (1990). Do smokers underestimate risks? Journal of Political Economy, 98, 1253–1269. doi: 10.1086/261733.CrossRefGoogle Scholar
  45. Wagner, T. H., Hu, T., Duenas, G. V., Kaplan, C. P., Nguyen, B. H., & Pasick, R. J. (2001). Does willingness to pay vary by race/ethnicity? An analysis using mammography among low-income women. Health Policy, 58, 275–288. doi: 10.1016/S0168-8510(01)00177-4.PubMedCrossRefGoogle Scholar
  46. Watson, V., & Ryan, M. (2007). Exploring preference anomalies in double bounded contingent valuation. Journal of Health Economics, 26, 463–482. doi: 10.1016/j.jhealeco.2006.10.009.PubMedCrossRefGoogle Scholar
  47. Whitehead, J. C. (2002). Incentive incompatibility and starting point bias in iterative valuation questions. Land Economy, 78, 285–297. doi: 10.2307/3147274.CrossRefGoogle Scholar
  48. Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Internal Medicine, Scott & White HealthcareTexas A&M University Health Science Center College of MedicineTempleUSA

Personalised recommendations