A20-OVA Nanoparticles Inhibit Allergic Asthma in a Murine Model

  • Xiang-Qian Luo
  • Jian-Wen Zhong
  • Shu-Yao Qiu
  • Min Zhi
  • Li-Qiang Yang
  • Yi-Long Zhou
  • Fen-Xuan Zhou
  • Ping-Chang Yang
  • Da-Bo Liu
  • Li-Hua MoEmail author
Original Article


The skewed T helper (Th) 2 response plays a critical role in the pathogenesis of allergic asthma. Regulatory T (Treg) cells and the regulatory cytokines are required in maintaining the homeostasis in the body. This study aims to determine the effects of a poly(lactic-co-glycolic) acid (PLGA)-ovalbumin (OVA)+A20 (a ubiquitin E3 ligase) nanovaccine on inhibiting allergic asthma in a murine model. In this study, A20 and OVA (a model antigen) were encapsulated into PLGA to be a nanovaccine (PLGA-OVA+A20). An allergic asthma murine model was developed with OVA as the specific antigen to test the role of PLGA-OVA+A20 nanovaccine in maintaining the immune homeostasis in the airway tissues. The results showed that PLGA-OVA+A20 nanovaccine inhibited the asthma responses in mice by suppressing Th2 inflammatory responses, promoting the generation of Treg cells in the airway tissues. We conclude that the PLGA-OVA+A20 nanovaccine has a marked inhibitory effect on the airway allergic response in sensitized mice by significantly promoting the generation of Treg cell and IL-10. The data suggest that PLGA-OVA+A20 has translational potential in the treatment of allergic asthma.


allergic asthma A20 nanovaccine Th2 response regulatory T cell 


Author Contributions

XQL, JWZ, SYQ, LQY, ZYL, MZ, and FXZ performed the experiments, analyzed the data, and reviewed the manuscript. LHM, DBL, and PCY organized and supervised the experiments. LHM and DBL designed the project and prepared the manuscript. PCY reviewed and edited the manuscript.

Funding Information

This study was supported by grants from the National Nature and Science Foundation of China (81701589), the Miao-Miao plan of Shenzhen Hospital, Southern Medical University (2017MM05), and Guangdong Nature Science Foundation (2016A030310248; 2014A020212569).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Masoli, M., D. Fabian, S. Holt, and R. Beasley. 2004. The global burden of asthma: Executive summary of the GINA DisSDination Committee report. Allergy. 59: 469–478.CrossRefGoogle Scholar
  2. 2.
    Hirose, K., A. Iwata, T. Tamachi, and H. Nakajima. 2017. Allergic airway inflammation: Key players beyond the Th2 cell pathway. Immunological Reviews 278: 145–161.CrossRefGoogle Scholar
  3. 3.
    Foster, P.S., S. Maltby, H.F. Rosenberg, H.L. Tay, S.P. Hogan, A.M. Collison, et al. 2017. Modeling TH2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Reviews 278: 20–40.CrossRefGoogle Scholar
  4. 4.
    Akdis, M., and C.A. Akdis. 2009. Therapeutic manipulation of immune tolerance in allergic disease. Nature Reviews. Drug Discovery 8: 645–660.CrossRefGoogle Scholar
  5. 5.
    Akdis, C.A. 2012. Therapies for allergic inflammation: Refining strategies to induce tolerance. Nature Medicine 18: 736–749.CrossRefGoogle Scholar
  6. 6.
    Akdis, C.A., T. Blesken, M. Akdis, B. Wuthrich, and K. Blaser. 1998. Role of interleukin 10 in specific immunotherapy. The Journal of Clinical Investigation 102: 98–106.CrossRefGoogle Scholar
  7. 7.
    Akkoc, T., D. Genc, N. Zibandeh, and T. Akkoc. 2018. Intranasal ovalbumin immunotherapy with mycobacterial adjuvant promotes regulatory T cell accumulation in lung tissues. Microbiology and Immunology 62: 531–540.CrossRefGoogle Scholar
  8. 8.
    Globinska, A., T. Boonpiyathad, P. Satitsuksanoa, M. Kleuskens, W. van de Veen, M. Sokolowska, et al. 2018. Mechanisms of allergen-specific immunotherapy: Diverse mechanisms of immune tolerance to allergens. Annals of Allergy, Asthma & Immunology 121: 306–312.CrossRefGoogle Scholar
  9. 9.
    Yukselen, A., and S.G. Kendirli. 2014. Role of immunotherapy in the treatment of allergic asthma. World Journal of Clinical Cases 2: 859–865.CrossRefGoogle Scholar
  10. 10.
    Ma, A., and B.A. Malynn. 2012. A20: Linking a complex regulator of ubiquitylation to immunity and human disease. Nature Reviews. Immunology 12: 774–785.CrossRefGoogle Scholar
  11. 11.
    Huang, P., X.R. Geng, G. Yang, C. Chen, Z. Liu, and P.C. Yang. 2012. Ubiquitin E3 ligase A20 contributes to maintaining epithelial barrier function. Cellular Physiology and Biochemistry 30: 702–710.CrossRefGoogle Scholar
  12. 12.
    Ventura, S., F. Cano, Y. Kannan, F. Breyer, M.J. Pattison, M.S. Wilson, and S.C. Ley. 2018. A20-binding inhibitor of NF-kappaB (ABIN) 2 negatively regulates allergic airway inflammation. The Journal of Experimental Medicine 215: 2737–2747.CrossRefGoogle Scholar
  13. 13.
    Kang, N.I., H.Y. Yoon, Y.R. Lee, M. Won, M.J. Chung, J.W. Park, et al. 2009. A20 attenuates allergic airway inflammation in mice. Journal of Immunology 183: 1488–1495.CrossRefGoogle Scholar
  14. 14.
    Schuijs, M.J., M.A. Willart, K. Vergote, D. Gras, K. Deswarte, M.J. Ege, F.B. Madeira, R. Beyaert, G. van Loo, F. Bracher, E. von Mutius, P. Chanez, B.N. Lambrecht, and H. Hammad. 2015. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 349: 1106–1110.CrossRefGoogle Scholar
  15. 15.
    Salari, F., A.R. Varasteh, F. Vahedi, M. Hashemi, and M. Sankian. 2015. Down-regulation of Th2 immune responses by sublingual administration of poly (lactic-co-glycolic) acid (PLGA)-encapsulated allergen in BALB/c mice. International Immunopharmacology 29: 672–678.CrossRefGoogle Scholar
  16. 16.
    Joshi, V.B., A. Adamcakova-Dodd, X. Jing, A. Wongrakpanich, K.N. Gibson-Corley, P.S. Thorne, and A.K. Salem. 2014. Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy. The AAPS Journal 16: 975–985.CrossRefGoogle Scholar
  17. 17.
    Trindade, R.A., P.K. Kiyohara, P.S. de Araujo, and D.C.M. Bueno. 2012. PLGA microspheres containing bee venom proteins for preventive immunotherapy. International Journal of Pharmaceutics 423: 124–133.CrossRefGoogle Scholar
  18. 18.
    Bosnjak, B., B. Stelzmueller, K.J. Erb, and M.M. Epstein. 2011. Treatment of allergic asthma: Modulation of Th2 cells and their responses. Respiratory Research 12: 114.CrossRefGoogle Scholar
  19. 19.
    Kim, S.B., A.Y. Lee, J.M. Chun, A.R. Lee, H.S. Kim, Y.S. Seo, et al. 2019. Anthriscus sylvestris root extract reduces allergic lung inflammation by regulating interferon regulatory factor 4-mediated Th2 cell activation. Journal of Ethnopharmacology 232: 165–175.CrossRefGoogle Scholar
  20. 20.
    Youm, J., H. Lee, H.B. Chang, J. Jeon, M.H. Yoon, J.Y. Woo, M.S. Choi, Y. Hwang, S. Seong, K. Na, and J. Yoon. 2017. Justicia procumbens extract (DW2008) selectively suppresses Th2 cytokines in splenocytes and ameliorates ovalbumin-induced airway inflammation in a mouse model of asthma. Biological & Pharmaceutical Bulletin 40: 1416–1422.CrossRefGoogle Scholar
  21. 21.
    Luo, X.Q., F. Ma, S. Wang, M.Z. Zhao, J.B. Shao, X.R. Geng, et al. 2019. Interleukin-5 induces apoptotic defects in CD4(+) T cells of patients with allergic rhinitis. Journal of Leukocyte Biology 105: 719–727.CrossRefGoogle Scholar
  22. 22.
    De Jong, W.H., and P.J. Borm. 2008. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine 3: 133–149.CrossRefGoogle Scholar
  23. 23.
    Choi, S., J. Lee, P. Kumar, K.Y. Lee, and S.K. Lee. 2011. Single chain variable fragment CD7 antibody conjugated PLGA/HDAC inhibitor immuno-nanoparticles: Developing human T cell-specific nano-technology for delivery of therapeutic drugs targeting latent HIV. Journal of Control Release 152 (Suppl 1): e9–e10.CrossRefGoogle Scholar
  24. 24.
    Reddy, K.S., B.R. Rashmi, H.J. Dechamma, S. Gopalakrishna, N. Banumathi, V.V. Suryanarayana, et al. 2012. Cationic microparticle [poly(D,L-lactide-co-glycolide)]-coated DNA vaccination induces a long-term immune response against foot and mouth disease in guinea pigs. The Journal of Gene Medicine 14: 348–352.CrossRefGoogle Scholar
  25. 25.
    Kostadinova, A.I., J. Middelburg, M. Ciulla, J. Garssen, W.E. Hennink, L. Knippels, C. van Nostrum, and L.E.M. Willemsen. 2018. PLGA nanoparticles loaded with beta-lactoglobulin-derived peptides modulate mucosal immunity and may facilitate cow’s milk allergy prevention. European Journal of Pharmacology 818: 211–220.CrossRefGoogle Scholar
  26. 26.
    Khademi, F., M. Derakhshan, A. Yousefi-Avarvand, A. Najafi, and M. Tafaghodi. 2018. A novel antigen of mycobacterium tuberculosis and MPLA adjuvant co-entrapped into PLGA:DDA hybrid nanoparticles stimulates mucosal and systemic immunity. Microbial Pathogenesis 125: 507–513.CrossRefGoogle Scholar
  27. 27.
    Sadat, T.M.F., K. Nejati-Koshki, A. Akbarzadeh, M.R. Yamchi, M. Milani, N. Zarghami, et al. 2014. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pacific Journal of Cancer Prevention 15: 517–535.CrossRefGoogle Scholar
  28. 28.
    Matsuda, M., Y. Morie, H. Oze, K. Doi, T. Tsutsumi, J. Hamaguchi, M. Inaba, and T. Nabe. 2018. Phenotype analyses of IL-10-producing Foxp3(-) CD4(+) T cells increased by subcutaneous immunotherapy in allergic airway inflammation. International Immunopharmacology 61: 297–305.CrossRefGoogle Scholar
  29. 29.
    Bohm, L., J. Maxeiner, H. Meyer-Martin, S. Reuter, S. Finotto, M. Klein, et al. 2015. IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma. Journal of Immunology 194: 887–897.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pediatric Otolaryngology, Shenzhen HospitalSouthern Medical UniversityShenzhenChina
  2. 2.The Research Center of Allergy & Immunology, School of MedicineShenzhen UniversityShenzhenChina

Personalised recommendations