Advertisement

Inflammation

pp 1–10 | Cite as

Cytomegalovirus Infection Exacerbates Experimental Colitis by Promoting IL-23 Production

  • Lingling Xuan
  • Lulu Ren
  • Feifei Han
  • Lili Gong
  • Zirui Wan
  • Song Yang
  • He Liu
  • Yali LvEmail author
  • Lihong LiuEmail author
Original Article
  • 8 Downloads

Abstract

Many studies have demonstrated an association between cytomegalovirus (CMV) infection and inflammatory bowel disease (IBD). Moreover, CMV infection is more common in patients with severe or steroid-refractory IBD. However, it is not clarified whether CMV worsens IBD or if it is merely a surrogate marker for IBD. Here, we used the dextran sodium sulfate (DSS)-induced colitis model to investigate if CMV infection exacerbates colitis. The mice were injected intraperitoneally with 10 MOI of murine CMV (MCMV) and thereafter, chronic colitis was induced by one cycle of DSS exposure. Anti-IL-23R mAb at 20 μg/mice and pyrrolidine dithiocarbamate (PDTC), an effective NF-κB inhibitor, at 50 mg/kg were administrated to the mice. The MCMV-infected mice had a shorter colon length and a higher histopathology score than the mock inoculum-treated mice, while anti-IL-23R mAb administration ameliorated the pathological changes. Expression of IL-23, phospho-NF-κB p65, and phospho-IκBα was upregulated in colon tissues of the MCMV-infected mice compared to mock inoculum-treated mice, while treatment with PDTC attenuated colonic IL-23 production. These data demonstrated that CMV infection could accelerate IBD development. This effect may be due to its activation on NF-κB signaling pathway and subsequently IL-23 production.

KEY WORDS

cytomegalovirus colitis IL-23 NF-κB 

Abbreviations

CMV

Cytomegalovirus

DMEM

Dulbecco’s modified Eagle’s medium

DSS

Dextran sodium sulfate

FBS

Fetal bovine serum

IBD

Inflammatory bowel disease

MCMV

Murine cytomegalovirus

MEFs

Mouse embryo fibroblast cells

PDTC

Pyrrolidine dithiocarbamate

SPF

Specific pathogen free

Notes

Author Contributions

Lingling Xuan designed and performed the experiments, analyzed the data, and drafted the manuscript. Lulu Ren assisted in in vivo experiments and revised the manuscript. Feifei Han and Lili Gong assisted in MCMV propagation. Zirui Wan, Song Yang, and He Liu helped in the analysis of data. Yali Lv and Lihong Liu designed the study, drafted and revised the manuscript. All authors read and approved the final manuscript.

Funding Information

This study was supported by Scientific Research Foundation of Capital Medical University (Nos. PYZ2018030 and 3500-1182080843), and National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (No. 2017ZX09101001, Beijing, China).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All of the animal experiments followed the instructions of the Laboratory Animal Management Statute of China Physiological Society and were approved by the Beijing Chao-Yang Hospital Committee on Ethics in the Care and Use of Laboratory Animals.

References

  1. 1.
    Lachance, P., J. Chen, R. Featherstone, and W.I. Sligl. 2017. Association between cytomegalovirus reactivation and clinical outcomes in immunocompetent critically ill patients: a systematic review and meta-analysis. Open Forum Infect Dis 4 (2): ofx029.  https://doi.org/10.1093/ofid/ofx029.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zuhair, M., G.S.A. Smit, G. Wallis, F. Jabbar, C. Smith, B. Devleesschauwer, and P. Griffiths. 2019. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol 29 (3): e2034.  https://doi.org/10.1002/rmv.2034.CrossRefPubMedGoogle Scholar
  3. 3.
    Furman, D., V. Jojic, S. Sharma, S.S. Shen-Orr, C.J. Angel, S. Onengut-Gumuscu, B.A. Kidd, et al. 2015. Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 7 (281)): 281ra243.  https://doi.org/10.1126/scitranslmed.aaa2293.CrossRefGoogle Scholar
  4. 4.
    Janahi, E.M.A., S. Das, S.N. Bhattacharya, S. Haque, N. Akhter, A. Jawed, M. Wahid, R.K. Mandal, M. Lohani, M.Y. Areeshi, V.G. Ramachandran, S. Almalki, and S.A. Dar. 2018. Cytomegalovirus aggravates the autoimmune phenomenon in systemic autoimmune diseases. Microb Pathog 120: 132–139.  https://doi.org/10.1016/j.micpath.2018.04.041.CrossRefPubMedGoogle Scholar
  5. 5.
    Ramos, G.P., and K.A. Papadakis. 2019. Mechanisms of disease: inflammatory bowel diseases. Mayo Clin Proc 94 (1): 155–165.  https://doi.org/10.1016/j.mayocp.2018.09.013.CrossRefPubMedGoogle Scholar
  6. 6.
    Dennis, E.A., L.E. Smythies, R. Grabski, M. Li, M.E. Ballestas, M. Shimamura, J.J. Sun, J. Grams, R. Stahl, M.E. Niederweis, W.J. Britt, and P.D. Smith. 2018. Cytomegalovirus promotes intestinal macrophage-mediated mucosal inflammation through induction of Smad7. Mucosal Immunol 11 (6): 1694–1704.  https://doi.org/10.1038/s41385-018-0041-4.CrossRefPubMedGoogle Scholar
  7. 7.
    Baniak, N., and R. Kanthan. 2016. Cytomegalovirus colitis: an uncommon mimicker of common colitides. Arch Pathol Lab Med 140 (8): 854–858.  https://doi.org/10.5858/arpa.2015-0176-RS.CrossRefPubMedGoogle Scholar
  8. 8.
    Kandiel, A., and B. Lashner. 2006. Cytomegalovirus colitis complicating inflammatory bowel disease. Am J Gastroenterol 101 (12): 2857–2865.  https://doi.org/10.1111/j.1572-0241.2006.00869.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Domenech, E., R. Vega, I. Ojanguren, A. Hernandez, E. Garcia-Planella, I. Bernal, M. Rosinach, J. Boix, E. Cabre, and M.A. Gassull. 2008. Cytomegalovirus infection in ulcerative colitis: a prospective, comparative study on prevalence and diagnostic strategy. Inflamm Bowel Dis 14 (10): 1373–1379.  https://doi.org/10.1002/ibd.20498.CrossRefPubMedGoogle Scholar
  10. 10.
    Jones, A., J.D. McCurdy, E.V. Loftus Jr., D.H. Bruining, F.T. Enders, J.M. Killian, and T.C. Smyrk. 2015. Effects of antiviral therapy for patients with inflammatory bowel disease and a positive intestinal biopsy for cytomegalovirus. Clin Gastroenterol Hepatol 13 (5): 949–955.  https://doi.org/10.1016/j.cgh.2014.09.042.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim, J.J., N. Simpson, N. Klipfel, R. Debose, N. Barr, and L. Laine. 2010. Cytomegalovirus infection in patients with active inflammatory bowel disease. Dig Dis Sci 55 (4): 1059–1065.  https://doi.org/10.1007/s10620-010-1126-4.CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Zafiri, R., A. Gologan, P. Galiatsatos, and A. Szilagyi. 2012. Cytomegalovirus complicating inflammatory bowel disease: a 10-year experience in a community-based, university-affiliated hospital. Gastroenterol Hepatol (N Y) 8 (4): 230–239.Google Scholar
  13. 13.
    Lv, Y.L., F.F. Han, Y.J. Jia, Z.R. Wan, L.L. Gong, H. Liu, and L.H. Liu. 2017. Is cytomegalovirus infection related to inflammatory bowel disease, especially steroid-resistant inflammatory bowel disease? A meta-analysis. Infect Drug Resist 10: 511–519.  https://doi.org/10.2147/IDR.S149784.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sheriff, M.Z., E. Mansoor, J. Luther, A.N. Ananthakrishnan, M. Abou Saleh, E. Ho, F.B.S. Briggs, and M. Dave. 2019. Opportunistic infections are more prevalent in Crohn's disease and ulcerative colitis: a large population-based study. Inflamm Bowel Dis.  https://doi.org/10.1093/ibd/izz147.
  15. 15.
    Ren, K., H. Yuan, Y. Zhang, X. Wei, and D. Wang. 2015. Macromolecular glucocorticoid prodrug improves the treatment of dextran sulfate sodium-induced mice ulcerative colitis. Clin Immunol 160 (1): 71–81.  https://doi.org/10.1016/j.clim.2015.03.027.CrossRefPubMedGoogle Scholar
  16. 16.
    Shon, W.J., Y.K. Lee, J.H. Shin, E.Y. Choi, and D.M. Shin. 2015. Severity of DSS-induced colitis is reduced in Ido1-deficient mice with down-regulation of TLR-MyD88-NF-kB transcriptional networks. Sci Rep 5: 17305.  https://doi.org/10.1038/srep17305.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xuan, L., R. Jiang, Z. Wu, H. Yi, C. Yao, Q. Hou, and C. Qu. 2016. Vam3, a compound derived from Vitis amurensis Rupr., attenuated colitis-related tumorigenesis by inhibiting NF-kappaB signaling pathway. Front Pharmacol 7: 311.  https://doi.org/10.3389/fphar.2016.00311.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Okada, Y., Y. Tsuzuki, H. Sato, K. Narimatsu, R. Hokari, C. Kurihara, C. Watanabe, K. Tomita, S. Komoto, A. Kawaguchi, S. Nagao, and S. Miura. 2013. Trans fatty acids exacerbate dextran sodium sulphate-induced colitis by promoting the up-regulation of macrophage-derived proinflammatory cytokines involved in T helper 17 cell polarization. Clin Exp Immunol 174 (3): 459–471.  https://doi.org/10.1111/cei.12200.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yang, G.X., Y. Sun, K. Tsuneyama, W. Zhang, P.S. Leung, X.S. He, A.A. Ansari, C. Bowlus, W.M. Ridgway, and M.E. Gershwin. 2016. Endogenous interleukin-22 protects against inflammatory bowel disease but not autoimmune cholangitis in dominant negative form of transforming growth factor beta receptor type II mice. Clin Exp Immunol 185 (2): 154–164.  https://doi.org/10.1111/cei.12806.CrossRefPubMedGoogle Scholar
  20. 20.
    Froberg, M.K., D. Dannen, A. Adams, J. Parker-Thornburg, and P. Kolattukudy. 2006. Murine cytomegalovirus infection markedly reduces serum MCP-1 levels in MCP-1 transgenic mice. Ann Clin Lab Sci 36 (2): 179–184.PubMedGoogle Scholar
  21. 21.
    Khan, K.A., A. Coaquette, C. Davrinche, and G. Herbein. 2009. Bcl-3-regulated transcription from major immediate-early promoter of human cytomegalovirus in monocyte-derived macrophages. J Immunol 182 (12): 7784–7794.  https://doi.org/10.4049/jimmunol.0803800.CrossRefPubMedGoogle Scholar
  22. 22.
    Chang, J., T.J. Voorhees, Y. Liu, Y. Zhao, and C.H. Chang. 2010. Interleukin-23 production in dendritic cells is negatively regulated by protein phosphatase 2A. Proc Natl Acad Sci U S A 107 (18): 8340–8345.  https://doi.org/10.1073/pnas.0914703107.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Maguire, O., K. O'Loughlin, and H. Minderman. 2015. Simultaneous assessment of NF-kappaB/p65 phosphorylation and nuclear localization using imaging flow cytometry. J Immunol Methods 423: 3–11.  https://doi.org/10.1016/j.jim.2015.03.018.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim, Y.S., Y.H. Kim, J.S. Kim, J.H. Cheon, B.D. Ye, S.A. Jung, Y.S. Park, C.H. Choi, B.I. Jang, D.S. Han, S.K. Yang, W.H. Kim, and IBD Study Group of the Korean Association for the Study of Intestinal Diseases. 2012. The prevalence and efficacy of ganciclovir on steroid-refractory ulcerative colitis with cytomegalovirus infection: a prospective multicenter study. J Clin Gastroenterol 46 (1): 51–56.  https://doi.org/10.1097/MCG.0b013e3182160c9c.CrossRefPubMedGoogle Scholar
  25. 25.
    Matsuoka, K., Y. Iwao, T. Mori, A. Sakuraba, T. Yajima, T. Hisamatsu, S. Okamoto, Y. Morohoshi, M. Izumiya, H. Ichikawa, T. Sato, N. Inoue, H. Ogata, and T. Hibi. 2007. Cytomegalovirus is frequently reactivated and disappears without antiviral agents in ulcerative colitis patients. Am J Gastroenterol 102 (2): 331–337.  https://doi.org/10.1111/j.1572-0241.2006.00989.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim, S.W., E.S. Kim, C.M. Moon, J.J. Park, T.I. Kim, W.H. Kim, and J.H. Cheon. 2011. Genetic polymorphisms of IL-23R and IL-17A and novel insights into their associations with inflammatory bowel disease. Gut 60 (11): 1527–1536.  https://doi.org/10.1136/gut.2011.238477.CrossRefPubMedGoogle Scholar
  27. 27.
    Duerr, R.H., K.D. Taylor, S.R. Brant, J.D. Rioux, M.S. Silverberg, M.J. Daly, A.H. Steinhart, C. Abraham, M. Regueiro, A. Griffiths, T. Dassopoulos, A. Bitton, H. Yang, S. Targan, L.W. Datta, E.O. Kistner, L.P. Schumm, A.T. Lee, P.K. Gregersen, M.M. Barmada, J.I. Rotter, D.L. Nicolae, and J.H. Cho. 2006. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314 (5804): 1461–1463.  https://doi.org/10.1126/science.1135245.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Moschen, A.R., H. Tilg, and T. Raine. 2019. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat Rev Gastroenterol Hepatol 16 (3): 185–196.  https://doi.org/10.1038/s41575-018-0084-8.CrossRefPubMedGoogle Scholar
  29. 29.
    Sadeghi, M., I. Lahdou, G. Opelz, A. Mehrabi, M. Zeier, P. Schnitzler, and V. Daniel. 2016. IL-23 plasma level is strongly associated with CMV status and reactivation of CMV in renal transplant recipients. BMC Immunol 17 (1): 35.  https://doi.org/10.1186/s12865-016-0175-7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karimi, M.H., A. Shariat, R. Yaghobi, T. Mokhtariazad, and S.M. Moazzeni. 2016. Role of cytomegalovirus on the maturation and function of monocyte derived dendritic cells of liver transplant patients. World J Transplant 6 (2): 336–346.  https://doi.org/10.5500/wjt.v6.i2.336.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wiig, H., O. Tenstad, P.O. Iversen, R. Kalluri, and R. Bjerkvig. 2010. Interstitial fluid: the overlooked component of the tumor microenvironment? Fibrogenesis Tissue Repair 3: 12.  https://doi.org/10.1186/1755-1536-3-12.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Maheshwari, A. 2004. Role of cytokines in human intestinal villous development. Clin Perinatol 31 (1): 143–155.  https://doi.org/10.1016/j.clp.2004.03.003.CrossRefPubMedGoogle Scholar
  33. 33.
    Garvin, S., and C. Dabrosin. 2003. Tamoxifen inhibits secretion of vascular endothelial growth factor in breast cancer in vivo. Cancer Res 63 (24): 8742–8748.PubMedGoogle Scholar
  34. 34.
    Yurochko, A.D., T.F. Kowalik, S.M. Huong, and E.S. Huang. 1995. Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J Virol 69 (9): 5391–5400.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacy, Beijing Chao-Yang HospitalCapital Medical UniversityBeijingChina

Personalised recommendations