pp 1–12 | Cite as

Ellagic Acid Ameliorates Renal Ischemic-Reperfusion Injury Through NOX4/JAK/STAT Signaling Pathway

  • Qiong LiuEmail author
  • Xiaobing Liang
  • Mintong Liang
  • Rongbin Qin
  • Feixing Qin
  • Xuelan WangEmail author
Original Article


Ellagic acid (EA), a natural polyphenolic compound, has been proved to possess multiple biological activities including alleviating ischemic-reperfusion (I/R) injury. The aim of this current study was to investigate whether EA alleviates I/R injury via regulating inflammatory signaling pathway. Rats were subjected to ischemic-reperfusion (I/R) injury and given orally with different doses of EA before surgery. H&E staining, ELISA assay, and biochemical index analysis were performed to evaluate renal injury and inflammatory factors. Oxidative stress level was detected by DCFH-DA staining and corresponding assay kits. In addition, TUNEL assay and flow cytometric assay were applied for exploring the apoptosis of tissue and cells, respectively. Western blot assay was used to assess protein expressions in tissue and cells. The results showed that EA attenuated the renal I/R injury and reserved renal cell function in vivo. The levels of TNF-a, IL-1β, IL-6, and MCP-1, oxidative stress level, and apoptosis were suppressed in EA-treated rats. Mechanistic studies showed that EA suppressed the phosphorylation of JAK1, JAK2, and STAT1 and reduced the NOX4 level. EA reduced apoptosis, hypoxia-induced inflammatory response, and ROS levels. Moreover, overexpression of NOX4 reversed the protective function with NOX4 inhibition, indicating that the effect of EA against renal IRI or cell hypoxia/reoxygenation might mainly depend on NOX4. The results suggest that EA exerts the renoprotective effect via suppressing NOX4/JAK/STAT signaling pathway, which may be a novel potential therapy for the treatment of acute kidney injury in clinic.


renal injury ellagic acid ischemia-reperfusion NOX4 rats 


Funding Information

The work was supported by Guangdong Provincial Key Platform and Major Scientific Research Projects (grant no. 2017KTSCX214); Guangzhou Science and Technology Project (grant no. 201806020107); Xinhua Institute Teachers Research Fund Project of Sun Yat-sen University (grant no. 2019ZD002).

Compliance with Ethical Standards

This study was approved by the Animal Care and Use Committee of SUN YAT-SEN University and conducted in accordance with the guidelines established by this committee.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Levey, A.S., and M.T. James. 2017. Acute kidney injury. Annals of Internal Medicine 167: Itc66–itc80.CrossRefGoogle Scholar
  2. 2.
    Yoshida, T., H. Kumagai, T. Kohsaka, and N. Ikegaya. 2013. Relaxin protects against renal ischemia-reperfusion injury. American Journal of Physiology. Renal Physiology 305: F1169–F1176.CrossRefGoogle Scholar
  3. 3.
    Friedewald, J.J., and H. Rabb. 2004. Inflammatory cells in ischemic acute renal failure. Kidney International 66: 486–491.CrossRefGoogle Scholar
  4. 4.
    Goncalves, G.M., A. Castoldi, T.T. Braga, and N.O. Camara. 2011. New roles for innate immune response in acute and chronic kidney injuries. Scandinavian Journal of Immunology 73: 428–435.CrossRefGoogle Scholar
  5. 5.
    Gluba, A., M. Banach, S. Hannam, D.P. Mikhailidis, A. Sakowicz, and J. Rysz. 2010. The role of Toll-like receptors in renal diseases. Nature Reviews. Nephrology 6: 224–235.CrossRefGoogle Scholar
  6. 6.
    Yang, Q., F.R. Wu, J.N. Wang, L. Gao, L. Jiang, H.D. Li, Q. Ma, X.Q. Liu, B. Wei, L. Zhou, J. Wen, T.T. Ma, J. Li, and X.M. Meng. 2018. Nox4 in renal diseases: An update. Free Radical Biology & Medicine 124: 466–472.CrossRefGoogle Scholar
  7. 7.
    Ihle, J.N. 1995. Cytokine receptor signalling. Nature 377: 591–594.CrossRefGoogle Scholar
  8. 8.
    Lin, H.W., J.W. Thompson, K.C. Morris, and M.A. Perez-Pinzon. 2011. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxidants & Redox Signaling 14: 1853–1861.CrossRefGoogle Scholar
  9. 9.
    Hanada, T., and A. Yoshimura. 2002. Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews 13: 413–421.CrossRefGoogle Scholar
  10. 10.
    Kim, S.Y., K.A. Moon, H.Y. Jo, S. Jeong, S.H. Seon, E. Jung, Y.S. Cho, E. Chun, and K.Y. Lee. 2012. Anti-inflammatory effects of apocynin, an inhibitor of NADPH oxidase, in airway inflammation. Immunology and Cell Biology 90: 441–448.CrossRefGoogle Scholar
  11. 11.
    Day, C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. The British Journal of Nutrition 80: 5–6.CrossRefGoogle Scholar
  12. 12.
    Zhou, B.H., Z.P. Qiu, H.L. Yi, D.S. Zhou, J. Wang, and Y. Wu. 2016. Research progress of ellagitannin intestinal metabolite urolithins. Zhongguo Zhong Yao Za Zhi 41: 2968–2974.PubMedGoogle Scholar
  13. 13.
    Rogerio, A.P., C. Fontanari, M.C. Melo, S.R. Ambrosio, G.E. de Souza, P.S. Pereira, S.C. Franca, F.B. da Costa, D.A. Albuquerque, and L.H. Faccioli. 2006. Anti-inflammatory, analgesic and anti-oedematous effects of Lafoensia pacari extract and ellagic acid. The Journal of Pharmacy and Pharmacology 58: 1265–1273.CrossRefGoogle Scholar
  14. 14.
    Jordao, J.B.R., H.K.P. Porto, F.M. Lopes, A.C. Batista, and M.L. Rocha. 2017. Protective effects of ellagic acid on cardiovascular injuries caused by hypertension in rats. Planta Medica 83: 830–836.CrossRefGoogle Scholar
  15. 15.
    Ahmed, T., W.N. Setzer, S.F. Nabavi, I.E. Orhan, N. Braidy, E. Sobarzo-Sanchez, and S.M. Nabavi. 2016. Insights into effects of ellagic acid on the nervous system: a mini review. Current Pharmaceutical Design 22: 1350–1360.CrossRefGoogle Scholar
  16. 16.
    Boyuk, A., A. Onder, M. Kapan, M. Gumus, U. Fiotarat, M.K. Basaraliota, and H. Alp. 2011. Ellagic acid ameliorates lung injury after intestinal ischemia-reperfusion. Pharmacognosy Magazine 7: 224–228.CrossRefGoogle Scholar
  17. 17.
    Iino, T., K. Tashima, M. Umeda, Y. Ogawa, M. Takeeda, K. Takata, and K. Takeuchi. 2002. Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Life Sciences 70: 1139–1150.CrossRefGoogle Scholar
  18. 18.
    Sayar, I., S. Bicer, C. Gursul, M. Gurbuzel, K. Peker, and A. Isik. 2016. Protective effects of ellagic acid and ozone on rat ovaries with an ischemia/reperfusion injury. The Journal of Obstetrics and Gynaecology Research 42: 52–58.CrossRefGoogle Scholar
  19. 19.
    Bozkurt, Yasar, Ugur Firat, Murat Atar, Ahmet Ali Sancaktutar, Necmettin Pembegul, Haluk Soylemez, Hatice Yuksel, Harun Alp, Mehmet Nuri Bodakci, Namik Kemal Hatipoglu, and Sadik Buyukbas. 2012. The protective effect of ellagic acid against renal ischemia-reperfusion injury in male rats. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 18: 823–828.Google Scholar
  20. 20.
    Kumagai, Y., J. Sobajima, M. Higashi, T. Ishiguro, M. Fukuchi, K. Ishibashi, E. Mochiki, K. Yakabi, T. Kawano, J. Tamaru, and H. Ishida. 2015. Coexpression of COX-2 and iNOS in angiogenesis of superficial esophageal squamous cell carcinoma. International Surgery 100: 733–743.CrossRefGoogle Scholar
  21. 21.
    Suschek, C.V., O. Schnorr, and V. Kolb-Bachofen. 2004. The role of iNOS in chronic inflammatory processes in vivo: is it damage-promoting, protective, or active at all? Current Molecular Medicine 4: 763–775.CrossRefGoogle Scholar
  22. 22.
    Zhang, X., J. Cao, and L. Zhong. 2009. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn-Schmiedeberg's Archives of Pharmacology 379: 581–586.CrossRefGoogle Scholar
  23. 23.
    Cho, H., C.W. Yun, W.K. Park, J.Y. Kong, K.S. Kim, Y. Park, S. Lee, and B.K. Kim. 2004. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacological Research 49: 37–43.CrossRefGoogle Scholar
  24. 24.
    Qi, M., L. Zheng, Y. Qi, X. Han, Y. Xu, L. Xu, L. Yin, C. Wang, Y. Zhao, H. Sun, K. Liu, and J. Peng. 2015. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacological Research 100: 341–352.CrossRefGoogle Scholar
  25. 25.
    Jiang, G., X. Liu, M. Wang, H. Chen, Z. Chen, and T. Qiu. 2015. Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta Cirúrgica Brasileira 30: 422–429.CrossRefGoogle Scholar
  26. 26.
    O'Shea, J.J., D.M. Schwartz, A.V. Villarino, M. Gadina, I.B. McInnes, and A. Laurence. 2015. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annual Review of Medicine 66: 311–328.CrossRefGoogle Scholar
  27. 27.
    Villarino, A.V., Y. Kanno, and J.J. O'Shea. 2017. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nature Immunology 18: 374–384.CrossRefGoogle Scholar
  28. 28.
    Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological Research 76: 1–8.CrossRefGoogle Scholar
  29. 29.
    Dodington, D.W., H.R. Desai, and M. Woo. 2018. JAK/STAT - Emerging players in metabolism. Trends in Endocrinology and Metabolism 29: 55–65.CrossRefGoogle Scholar
  30. 30.
    Heumuller, S., S. Wind, E. Barbosa-Sicard, H.H. Schmidt, R. Busse, K. Schroder, and R.P. Brandes. 2008. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51: 211–217.CrossRefGoogle Scholar
  31. 31.
    Byfield, G., S. Budd, and M.E. Hartnett. 2009. The role of supplemental oxygen and JAK/STAT signaling in intravitreous neovascularization in a ROP rat model. Investigative Ophthalmology & Visual Science 50: 3360–3365.CrossRefGoogle Scholar
  32. 32.
    Banes, A.K., S.M. Shaw, A. Tawfik, B.P. Patel, S. Ogbi, D. Fulton, and M.B. Marrero. 2005. Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin. American Journal of Physiology. Cell Physiology 288: C805–C812.CrossRefGoogle Scholar
  33. 33.
    Gao, X., J. Sun, C. Huang, X. Hu, N. Jiang, and C. Lu. 2017. RNAi-mediated silencing of NOX4 inhibited the invasion of gastric cancer cells through JAK2/STAT3 signaling. American Journal of Translational Research 9: 4440–4449.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Rozentsvit, A., K. Vinokur, S. Samuel, Y. Li, A.M. Gerdes, and M.A. Carrillo-Sepulveda. 2017. Ellagic acid reduces high glucose-induced vascular oxidative stress through ERK1/2/NOX4 signaling pathway. Cellular Physiology and Biochemistry 44: 1174–1187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Experiment CenterXinhua College of Sun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations