Chloroquine and 3-Methyladenine Attenuates Periodontal Inflammation and Bone Loss in Experimental Periodontitis
Abstract
Periodontitis is an inflammation characterized by alveolar bone resorption caused by imbalance in bone homeostasis. It is known that autophagy is related to inflammation and bone metabolism. However, whether autophagy inhibitors could be used for periodontitis in animal models remains unknown. We investigated the role of two classical autophagy inhibitors, 3-methyladenine (3-MA) and chloroquine (CQ), on the development of rat experimental periodontitis in terms of the bone loss (micro-CT), the number of inflammatory cells (hematoxylin and eosin staining), and the osteoclastic activity (tartrate-resistant acid phosphatase staining). Expression of autophagy-related genes and nuclear factor kappa B p65 (NF-κB p65) were assessed by immunohistochemistry. Expression of Beclin-1 and microtubule-associated proteins 1A/1B light chain 3 (LC3) were analyzed by Western blot. To further observe the effect of autophagy inhibitors on osteoclasts (OCs) in vitro, bone marrow–derived mononuclear macrophages were used. Together, these findings indicated that topical administration of 3-MA or CQ reduced the infiltration of inflammatory cells and alveolar bone resorption in experimental periodontitis. Furthermore, 3-MA and CQ may attenuate activation of OCs by autophagy. Therefore, 3MA and CQ may have prophylactic and therapeutic potential for inflammation and alveolar bone resorption in periodontitis in the future.
KEY WORDS
experimental periodontitis autophagy chloroquine 3-methyladenine osteoclastsNotes
Acknowledgments
The authors thank Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University.
Funding Information
This study was financially supported by the National Natural Science Foundation Project (No. 81400521, 81771078) and the Nanjing Medical Science and Technique Development Foundation (QRX17177).
Compliance with Ethical Standards
All experimental procedures described in this study have been approved by the Animal Ethics Committee of Nanjing University and were carried out in accordance with the National Institutes of Health guide for the care and use of laboratory animals.
Conflict of Interest
The authors declare that they have no conflicts of interest.
References
- 1.Hajishengallis, G. 2015. Periodontitis: from microbial immune subversion to systemic inflammation. Nature Reviews Immunology 15 (1): 30–44. https://doi.org/10.1038/nri3785.CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Pihlstrom, B.L., B.S. Michalowicz, and N.W. Johnson. 2005. Periodontal diseases. Lancet 366 (9499): 1809–1820. https://doi.org/10.1016/S0140-6736(05)67728-8.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Schwartz, Z., J. Goultschin, D.D. Dean, and B.D. Boyan. 1997. Mechanisms of alveolar bone destruction in periodontitis. Periodontol 2000 (14): 158–172.CrossRefGoogle Scholar
- 4.Boyle, W.J., W.S. Simonet, and D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423 (6937): 337–342. https://doi.org/10.1038/nature01658.CrossRefPubMedGoogle Scholar
- 5.Kobayashi, Y., S. Uehara, M. Koide, and N. Takahashi. 2015. The regulation of osteoclast differentiation by Wnt signals. BoneKEy Reports 4: 713. https://doi.org/10.1038/bonekey.2015.82.CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Zhang, L., Y.F. Guo, Y.Z. Liu, Y.J. Liu, D.H. Xiong, X.G. Liu, L. Wang, T.L. Yang, S.F. Lei, Y. Guo, H. Yan, Y.F. Pei, F. Zhang, C.J. Papasian, R.R. Recker, and H.W. Deng. 2010. Pathway-based genome-wide association analysis identified the importance of regulation-of-autophagy pathway for ultradistal radius BMD. Journal of Bone and Mineral Research 25 (7): 1572–1580. https://doi.org/10.1002/jbmr.36.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Levine, B., and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell 132 (1): 27–42. https://doi.org/10.1016/j.cell.2007.12.018.CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Bullon, P., M.D. Cordero, J.L. Quiles, C. Ramirez-Tortosa Mdel, A. Gonzalez-Alonso, S. Alfonsi, R. Garcia-Marin, M. de Miguel, and M. Battino. 2012. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Medicine 10: 122. https://doi.org/10.1186/1741-7015-10-122.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Lin, N.Y., C. Beyer, A. Giessl, T. Kireva, C. Scholtysek, S. Uderhardt, L.E. Munoz, C. Dees, A. Distler, S. Wirtz, G. Krönke, B. Spencer, O. Distler, G. Schett, and J.H. Distler. 2013. Autophagy regulates TNFalpha-mediated joint destruction in experimental arthritis. Annals of the Rheumatic Diseases 72 (5): 761–768. https://doi.org/10.1136/annrheumdis-2012-201671.CrossRefPubMedGoogle Scholar
- 10.Cejka, D., S. Hayer, B. Niederreiter, W. Sieghart, T. Fuereder, J. Zwerina, and G. Schett. 2010. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis and Rheumatism 62 (8): 2294–2302. https://doi.org/10.1002/art.27504.CrossRefPubMedGoogle Scholar
- 11.Ti, Y., L. Zhou, R. Wang, and J. Zhao. 2015. Inhibition of microtubule dynamics affects podosome belt formation during osteoclast induction. Cell Biochemistry and Biophysics 71 (2): 741–747. https://doi.org/10.1007/s12013-014-0258-0.CrossRefPubMedGoogle Scholar
- 12.Kim, W.K., K. Ke, O.J. Sul, H.J. Kim, S.H. Kim, M.H. Lee, H.J. Kim, S.Y. Kim, H.T. Chung, and H.S. Choi. 2011. Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis. Journal of Cellular Biochemistry 112 (11): 3159–3166. https://doi.org/10.1002/jcb.23242.CrossRefPubMedGoogle Scholar
- 13.Petiot, A., E. Ogier-Denis, E.F. Blommaart, A.J. Meijer, and P. Codogno. 2000. Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. The Journal of Biological Chemistry 275 (2): 992–998. https://doi.org/10.1074/jbc.275.2.992.CrossRefPubMedGoogle Scholar
- 14.Ito, S., N. Koshikawa, S. Mochizuki, and K. Takenaga. 2007. 3-Methyladenine suppresses cell migration and invasion of HT1080 fibrosarcoma cells through inhibiting phosphoinositide 3-kinases independently of autophagy inhibition. International Journal of Oncology 31 (2): 261–268.PubMedGoogle Scholar
- 15.Yang, A., N.V. Rajeshkumar, X. Wang, S. Yabuuchi, B.M. Alexander, G.C. Chu, D.D. Von Hoff, A. Maitra, and A.C. Kimmelman. 2014. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discovery 4 (8): 905–913. https://doi.org/10.1158/2159-8290.CD-14-0362.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Ke, X., L. Lei, H. Li, H. Li, and F. Yan. 2016. Manipulation of necroptosis by Porphyromonas gingivalis in periodontitis development. Molecular Immunology 77: 8–13. https://doi.org/10.1016/j.molimm.2016.07.010.CrossRefPubMedGoogle Scholar
- 17.Bugueno, I.M., F. Batool, L. Korah, N. Benkirane-Jessel, and O. Huck. 2018. Porphyromonas gingivalis differentially modulates apoptosome apoptotic peptidase activating factor 1 in epithelial cells and fibroblasts. The American Journal of Pathology 188 (2): 404–416. https://doi.org/10.1016/j.ajpath.2017.10.014.CrossRefPubMedGoogle Scholar
- 18.Wada-Mihara, C., H. Seto, H. Ohba, K. Tokunaga, J.I. Kido, T. Nagata, and K. Naruishi. 2018. Local administration of calcitonin inhibits alveolar bone loss in an experimental periodontitis in rats. Biomedicine & Pharmacotherapy 97: 765–770. https://doi.org/10.1016/j.biopha.2017.10.165.CrossRefGoogle Scholar
- 19.Ni, C., J. Zhou, N. Kong, T. Bian, Y. Zhang, X. Huang, Y. Xiao, W. Yang, and F. Yan. 2019. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials 206: 115–132. https://doi.org/10.1016/j.biomaterials.2019.03.039.CrossRefPubMedGoogle Scholar
- 20.Wu, Y.H., R. Kuraji, Y. Taya, H. Ito, and Y. Numabe. 2018. Effects of theaflavins on tissue inflammation and bone resorption on experimental periodontitis in rats. Journal of Periodontal Research 53 (6): 1009–1019. https://doi.org/10.1111/jre.12600.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Yang, D., R. Liu, L. Liu, H. Liao, C. Wang, and Z. Cao. 2017. Involvement of CD147 in alveolar bone remodeling and soft tissue degradation in experimental periodontitis. Journal of Periodontal Research 52 (4): 704–712. https://doi.org/10.1111/jre.12435.CrossRefPubMedGoogle Scholar
- 22.Gyongyosi, A., K. Szoke, F. Fenyvesi, Z. Fejes, I.B. Debreceni, B. Nagy Jr., A. Tosaki, and I. Lekli. 2019. Inhibited autophagy may contribute to heme toxicity in cardiomyoblast cells. Biochemical and Biophysical Research Communications 511 (4): 732–738. https://doi.org/10.1016/j.bbrc.2019.02.140.CrossRefPubMedGoogle Scholar
- 23.Bostanci, N., and G.N. Belibasakis. 2012. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiology Letters 333 (1): 1–9. https://doi.org/10.1111/j.1574-6968.2012.02579.x.CrossRefPubMedGoogle Scholar
- 24.Zhou, R., L. Shen, C. Yang, L. Wang, H. Guo, P. Yang, and A. Song. 2018. Periodontitis may restrain the mandibular bone healing via disturbing osteogenic and osteoclastic balance. Inflammation 41 (3): 972–983. https://doi.org/10.1007/s10753-018-0751-5.CrossRefPubMedGoogle Scholar
- 25.Tong, X., J. Gu, R. Song, D. Wang, Z. Sun, C. Sui, C. Zhang, X. Liu, J. Bian, and Z. Liu. 2018. Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.27468.CrossRefGoogle Scholar
- 26.Sul, O.J., H.J. Park, H.J. Son, and H.S. Choi. 2017. Lipopolysaccharide (LPS)-induced autophagy is responsible for enhanced osteoclastogenesis. Molecular Cell 40 (11): 880–887. https://doi.org/10.14348/molcells.2017.0230.CrossRefGoogle Scholar
- 27.Giampieri, F., S. Afrin, T.Y. Forbes-Hernandez, M. Gasparrini, D. Cianciosi, P. Reboredo-Rodriguez, A. Varela-Lopez, J.L. Quiles, and M. Battino. 2019. Autophagy in human health and disease: novel therapeutic opportunities. Antioxidants & Redox Signaling 30 (4): 577–634. https://doi.org/10.1089/ars.2017.7234.CrossRefGoogle Scholar
- 28.An, Y., W. Liu, P. Xue, Y. Zhang, Q. Wang, and Y. Jin. 2016. Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. Journal of Clinical Periodontology 43 (7): 618–625. https://doi.org/10.1111/jcpe.12549.CrossRefPubMedGoogle Scholar
- 29.Carloni, S., S. Girelli, C. Scopa, G. Buonocore, M. Longini, and W. Balduini. 2010. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6 (3): 366–377. https://doi.org/10.4161/auto.6.3.11261.CrossRefPubMedGoogle Scholar
- 30.Morgan, M.J., G. Gamez, C. Menke, A. Hernandez, J. Thorburn, F. Gidan, L. Staskiewicz, S. Morgan, C. Cummings, P. Maycotte, and A. Thorburn. 2014. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent. Autophagy 10 (10): 1814–1826. https://doi.org/10.4161/auto.32135.CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Zou, Y., Y.H. Ling, J. Sironi, E.L. Schwartz, R. Perez-Soler, and B. Piperdi. 2013. The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib. Journal of Thoracic Oncology 8 (6): 693–702. https://doi.org/10.1097/JTO.0b013e31828c7210.CrossRefPubMedGoogle Scholar
- 32.Shin, H., S. Choi, and H.J. Lim. 2014. Relationship between reactive oxygen species and autophagy in dormant mouse blastocysts during delayed implantation. Clinical and Experimental Reproductive Medicine 41 (3): 125–131. https://doi.org/10.5653/cerm.2014.41.3.125.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Zhao, Y., G. Chen, W. Zhang, N. Xu, J.Y. Zhu, J. Jia, Z.J. Sun, Y.N. Wang, and Y.F. Zhao. 2012. Autophagy regulates hypoxia-induced osteoclastogenesis through the HIF-1alpha/BNIP3 signaling pathway. Journal of Cellular Physiology 227 (2): 639–648. https://doi.org/10.1002/jcp.22768.CrossRefPubMedGoogle Scholar
- 34.Wu, Y.T., H.L. Tan, G. Shui, C. Bauvy, Q. Huang, M.R. Wenk, C.N. Ong, P. Codogno, and H.M. Shen. 2010. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. The Journal of Biological Chemistry 285 (14): 10850–10861. https://doi.org/10.1074/jbc.M109.080796.CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Lin, N.Y., A. Stefanica, and J.H. Distler. 2013. Autophagy: a key pathway of TNF-induced inflammatory bone loss. Autophagy 9 (8): 1253–1255. https://doi.org/10.4161/auto.25467.CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Hou, C.H., Y.C. Fong, and C.H. Tang. 2011. HMGB-1 induces IL-6 production in human synovial fibroblasts through c-Src, Akt and NF-kappaB pathways. Journal of Cellular Physiology 226 (8): 2006–2015. https://doi.org/10.1002/jcp.22541.CrossRefPubMedGoogle Scholar
- 37.Min, Y., M.J. Kim, S. Lee, E. Chun, and K.Y. Lee. 2018. Inhibition of TRAF6 ubiquitin-ligase activity by PRDX1 leads to inhibition of NFKB activation and autophagy activation. Autophagy 14 (8): 1347–1358. https://doi.org/10.1080/15548627.2018.1474995.CrossRefPubMedPubMedCentralGoogle Scholar
- 38.Levine, B., M. Packer, and P. Codogno. 2015. Development of autophagy inducers in clinical medicine. The Journal of Clinical Investigation 125 (1): 14–24. https://doi.org/10.1172/JCI73938.CrossRefPubMedPubMedCentralGoogle Scholar