pp 1–10 | Cite as

Interference of Skin Scratching Attenuates Accumulation of Neutrophils in Murine Allergic Contact Dermatitis Model

  • Hiroyasu SakaiEmail author
  • Taku Ishida
  • Ken Sato
  • Kazutaka Mandokoro
  • Saori Yabe
  • Fumiaki Sato
  • Yoshihiko Chiba
  • Risako Kon
  • Nobutomo Ikarashi
  • Junzo Kamei
Original Article


We recently reported that swelling resulting from 2,4,6-trinitrochlorobenzene (TNCB) challenge might be associated with recruitment of neutrophils. However, it is not known whether neutrophil recruitment is affected by scratching at inflamed sites or not. Therefore, the effects of an Elizabethan collar on the TNCB-induced upregulation of ELR-positive chemokines (CXCL1, CXCL2, and CXCL5) and neutrophil recruitment were investigated. Mice were sensitized by the application of TNCB on abdominal skin. Then, the mice were challenged three times with TNCB to auricle of the ear. To prevent scratching at inflamed sites, an Elizabethan collar was placed on the mice from just before the first challenge until the end of the experiment. The effects of the Elizabethan collar on the TNCB-induced upregulation of CXCLs chemokines and recruitment of neutrophil were investigated. The increase of ear swelling by TNCB challenge was inhibited by the Elizabethan collar. TNCB-challenge-induced upregulation of TNF-α, IL-1β, IL-6, ELR+ chemokines, MPO, and ELA2 was also attenuated by the Elizabethan collar. The gene expression of CXCL1, CXCL2, and CXCL5 human homolog IL-8 was enhanced by TNF-α and IL-1β in human dermal fibroblasts and epidermal keratinocytes. We here suggest that scratching the site of inflammation leads to neutrophil accumulation mediated by TNF-α and IL-1β/ELR+ chemokines in TNCB-challenge-induced contact dermatitis in mice.


allergic contact dermatitis itch sensation skin scratching chemokine neutrophil 



We thank Ms. Yuka Tsukimura and Ms. Maya Inomata for their technical assistance. The authors would like to thank Enago ( for the English language review.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Standards

All animal experiments were approved by the Animal Care Committee of the Hoshi University, Tokyo, Japan (permission code: 30-091).


  1. 1.
    Andoh, T., T. Nagasawa, M. Satoh, and Y. Kuraishi. 1998. Substance P induction of itch-associated response mediated by cutaneous NK1 tachykinin receptors in mice. The Journal of Pharmacology and Experimental Therapeutics 286: 1140–1145.Google Scholar
  2. 2.
    Bautista, D.M., S.R. Wilson, and M.A. Hoon. 2014. Why we scratch an itch: The molecules, cells and circuits of itch. Nature Neuroscience 17: 175–182.CrossRefGoogle Scholar
  3. 3.
    Bergasa, N.V., T.L. Talbot, D.W. Alling, J.M. Schmitt, E.C. Walker, B.L. Baker, J.C. Korenman, Y. Park, J.H. Hoofnagle, and E.A. Jones. 1992. A controlled trial of naloxone infusions for the pruritus of chronic cholestasis. Gastroenterology 102: 544–549.CrossRefGoogle Scholar
  4. 4.
    Coenraads, P.J., and M. Goncalo. 2007. Skin diseases with high public health impact. Contact dermatitis. European Journal of Dermatology 17: 564–565.Google Scholar
  5. 5.
    Del Rio, L., S. Bennouna, J. Salinas, and E.Y. Denkers. 2001. CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. Journal of Immunology 167: 6503–6509.CrossRefGoogle Scholar
  6. 6.
    Disteldorf, E.M., C.F. Krebs, H.J. Paust, J.E. Turner, G. Nouailles, A. Tittel, C. Meyer-Schwesinger, G. Stege, S. Brix, J. Velden, T. Wiech, U. Helmchen, O.M. Steinmetz, A. Peters, S.B. Bennstein, A. Kaffke, C. Llanto, S.A. Lira, H.W. Mittrucker, R.A. Stahl, C. Kurts, S.H. Kaufmann, and U. Panzer. 2015. CXCL5 drives neutrophil recruitment in TH17-mediated GN. Journal of the American Society of Nephrology 26: 55–66.CrossRefGoogle Scholar
  7. 7.
    Girbl, T., T. Lenn, L. Perez, L. Rolas, A. Barkaway, A. Thiriot, C. Del Fresno, E. Lynam, E. Hub, M. Thelen, G. Graham, R. Alon, D. Sancho, U.H. von Andrian, M.B. Voisin, A. Rot, and S. Nourshargh. 2018. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity 49 (1062–1076): e1066.Google Scholar
  8. 8.
    Gittler, J.K., A. Shemer, M. Suarez-Farinas, J. Fuentes-Duculan, K.J. Gulewicz, C.Q. Wang, H. Mitsui, I. Cardinale, Strong C. de Guzman, J.G. Krueger, and E. Guttman-Yassky. 2012. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. The Journal of Allergy and Clinical Immunology 130: 1344–1354.CrossRefGoogle Scholar
  9. 9.
    Grenda, D.S., M. Murakami, J. Ghatak, J. Xia, L.A. Boxer, D. Dale, M.C. Dinauer, and D.C. Link. 2007. Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood 110: 4179–4187.CrossRefGoogle Scholar
  10. 10.
    Jin, H., R. He, M. Oyoshi, and R.S. Geha. 2009. Animal models of atopic dermatitis. The Journal of Investigative Dermatology 129: 31–40.CrossRefGoogle Scholar
  11. 11.
    Kielian, T., B. Barry, and W.F. Hickey. 2001. CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. Journal of Immunology 166: 4634–4643.CrossRefGoogle Scholar
  12. 12.
    Kimber, I., D.A. Basketter, G.F. Gerberick, and R.J. Dearman. 2002. Allergic contact dermatitis. International Immunopharmacology 2: 201–211.CrossRefGoogle Scholar
  13. 13.
    Klein, P.A., and R.A. Clark. 1999. An evidence-based review of the efficacy of antihistamines in relieving pruritus in atopic dermatitis. Archives of Dermatology 135: 1522–1525.CrossRefGoogle Scholar
  14. 14.
    Knott, P.G., P.R. Gater, P.J. Dunford, M.E. Fuentes, and C.P. Bertrand. 2001. Rapid up-regulation of CXC chemokines in the airways after Ag-specific CD4+ T cell activation. Journal of Immunology 166: 1233–1240.CrossRefGoogle Scholar
  15. 15.
    Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology 13: 159–175.CrossRefGoogle Scholar
  16. 16.
    Konrad, F.M., and J. Reutershan. 2012. CXCR2 in acute lung injury. Mediators of Inflammation 2012: 740987.CrossRefGoogle Scholar
  17. 17.
    Mahtani, R., N. Parekh, I. Mangat, and S. Bhalerao. 2005. Alleviating the itch-scratch cycle in atopic dermatitis. Psychosomatics 46: 373–374.CrossRefGoogle Scholar
  18. 18.
    Matsumoto, K., M.W. Lo, T. Hosoya, K. Tashima, H. Takayama, T. Murayama, and S. Horie. 2012. Experimental colitis alters expression of 5-HT receptors and transient receptor potential vanilloid 1 leading to visceral hypersensitivity in mice. Laboratory Investigation 92: 769–782.CrossRefGoogle Scholar
  19. 19.
    Mittermann, I., K.J. Aichberger, R. Bunder, N. Mothes, H. Renz, and R. Valenta. 2004. Autoimmunity and atopic dermatitis. Current Opinion in Allergy and Clinical Immunology 4: 367–371.CrossRefGoogle Scholar
  20. 20.
    Monroe, E.W. 1989. Efficacy and safety of nalmefene in patients with severe pruritus caused by chronic urticaria and atopic dermatitis. Journal of the American Academy of Dermatology 21: 135–136.CrossRefGoogle Scholar
  21. 21.
    Moynagh, P.N. 2005. The interleukin-1 signalling pathway in astrocytes: A key contributor to inflammation in the brain. Journal of Anatomy 207: 265–269.CrossRefGoogle Scholar
  22. 22.
    Munday, J., R. Bloomfield, M. Goldman, H. Robey, G.J. Kitowska, Z. Gwiezdziski, A. Wankiewicz, R. Marks, F. Protas-Drozd, and M. Mikaszewska. 2002. Chlorpheniramine is no more effective than placebo in relieving the symptoms of childhood atopic dermatitis with a nocturnal itching and scratching component. Dermatology 205: 40–45.CrossRefGoogle Scholar
  23. 23.
    Nakajima, S., T. Nomura, J. Common, and K. Kabashima. 2019. Insights into atopic dermatitis gained from genetically defined mouse models. The Journal of Allergy and Clinical Immunology 143: 13–25.CrossRefGoogle Scholar
  24. 24.
    Oyoshi, M.K., R. He, Y. Li, S. Mondal, J. Yoon, R. Afshar, M. Chen, D.M. Lee, H.R. Luo, A.D. Luster, J.S. Cho, L.S. Miller, A. Larson, G.F. Murphy, and R.S. Geha. 2012. Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation. Immunity 37: 747–758.CrossRefGoogle Scholar
  25. 25.
    Pfenninger, J.L., and G.G. Zainea. 2001. Common anorectal conditions: Part I. Symptoms and complaints. American Family Physician 63: 2391–2398.Google Scholar
  26. 26.
    Reidel, B., G. Radicioni, P.W. Clapp, A.A. Ford, S. Abdelwahab, M.E. Rebuli, P. Haridass, N.E. Alexis, I. Jaspers, and M. Kesimer. 2018. E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion. American Journal of Respiratory and Critical Care Medicine 197: 492–501.CrossRefGoogle Scholar
  27. 27.
    Sakai, H., K. Sato, F. Sato, Y. Kai, K. Mandokoro, K. Matsumoto, S. Kato, T. Yumoto, M. Narita, and Y. Chiba. 2017. Curcumin inhibits epigen and amphiregulin upregulated by 2,4,6-trinitrochlorobenzene associated with attenuation of skin swelling. Inflammation Research 66: 663–678.CrossRefGoogle Scholar
  28. 28.
    Sakai, H., S. Yabe, K. Sato, Y. Kai, F. Sato, T. Yumoto, Y. Inoue, M. Narita, K. Matsumoto, S. Kato, and Y. Chiba. 2018. ELR(+) chemokine-mediated neutrophil recruitment is involved in 2,4,6-trinitrochlorobenzene-induced contact hypersensitivity. Clinical and Experimental Pharmacology & Physiology 45: 27–33.CrossRefGoogle Scholar
  29. 29.
    Shiratori-Hayashi, M., K. Koga, H. Tozaki-Saitoh, Y. Kohro, H. Toyonaga, C. Yamaguchi, A. Hasegawa, T. Nakahara, J. Hachisuka, S. Akira, H. Okano, M. Furue, K. Inoue, and M. Tsuda. 2015. STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nature Medicine 21: 927–931.CrossRefGoogle Scholar
  30. 30.
    Timm, K.I. 1988. Pruritus in rabbits, rodents, and ferrets. The Veterinary Clinics of North America. Small Animal Practice 18: 1077–1091.CrossRefGoogle Scholar
  31. 31.
    Ueno, K., M. Urai, K. Izawa, Y. Otani, N. Yanagihara, M. Kataoka, S. Takatsuka, M. Abe, H. Hasegawa, K. Shimizu, T. Kitamura, J. Kitaura, Y. Miyazaki, and Y. Kinjo. 2018. Mouse LIMR3/CD300f is a negative regulator of the antimicrobial activity of neutrophils. Scientific Reports 8: 17406.CrossRefGoogle Scholar
  32. 32.
    Vieira, S.M., H.P. Lemos, R. Grespan, M.H. Napimoga, D. Dal-Secco, A. Freitas, T.M. Cunha, W.A. Verri Jr., D.A. Souza-Junior, M.C. Jamur, K.S. Fernandes, C. Oliver, J.S. Silva, M.M. Teixeira, and F.Q. Cunha. 2009. A crucial role for TNF-alpha in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. British Journal of Pharmacology 158: 779–789.CrossRefGoogle Scholar
  33. 33.
    Wahlgren, C.F., O. Hagermark, and R. Bergstrom. 1990. The antipruritic effect of a sedative and a non-sedative antihistamine in atopic dermatitis. The British Journal of Dermatology 122: 545–551.CrossRefGoogle Scholar
  34. 34.
    Weidinger, S., and N. Novak. 2016. Atopic dermatitis. Lancet 387: 1109–1122.CrossRefGoogle Scholar
  35. 35.
    Wood, L.D., and A. Richmond. 1995. Constitutive and cytokine-induced expression of the melanoma growth stimulatory activity/GRO alpha gene requires both NF-kappa B and novel constitutive factors. The Journal of Biological Chemistry 270: 30619–30626.CrossRefGoogle Scholar
  36. 36.
    Yamaguchi, T., T. Nagasawa, M. Satoh, and Y. Kuraishi. 1999. Itch-associated response induced by intradermal serotonin through 5-HT2 receptors in mice. Neuroscience Research 35: 77–83.CrossRefGoogle Scholar
  37. 37.
    Zineh, I., A.L. Beitelshees, G.J. Welder, W. Hou, N. Chegini, J. Wu, S. Cresci, M.A. Province, and J.A. Spertus. 2008. Epithelial neutrophil-activating peptide (ENA-78), acute coronary syndrome prognosis, and modulatory effect of statins. PLoS One 3: e3117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hiroyasu Sakai
    • 1
    Email author
  • Taku Ishida
    • 1
  • Ken Sato
    • 2
  • Kazutaka Mandokoro
    • 3
  • Saori Yabe
    • 1
  • Fumiaki Sato
    • 2
  • Yoshihiko Chiba
    • 4
  • Risako Kon
    • 1
  • Nobutomo Ikarashi
    • 1
  • Junzo Kamei
    • 1
  1. 1.Department of Biomolecular PharmacologyHoshi UniversityTokyoJapan
  2. 2.Department of Analytical Pathophysiology, School of PharmacyHoshi UniversityTokyoJapan
  3. 3.Department of Pharmacology, School of PharmacyHoshi UniversityTokyoJapan
  4. 4.Department of Physiology and Molecular Sciences, School of PharmacyHoshi UniversityTokyoJapan

Personalised recommendations