, Volume 42, Issue 6, pp 2181–2191 | Cite as

Role of JNK Signaling Pathway in Dexmedetomidine Post-Conditioning-Induced Reduction of the Inflammatory Response and Autophagy Effect of Focal Cerebral Ischemia Reperfusion Injury in Rats

  • Yulin Zhu
  • Shihong Li
  • Jingying Liu
  • Qing Wen
  • Jingui Yu
  • Lingzhi Yu
  • Kun XieEmail author
Original Article


To investigate the effect of dexmedetomidine post-conditioning on the inflammatory response and autophagy effect of focal cerebral ischemia reperfusion injury in rats, and further to study its potential mechanisms. Water maze was conducted to evaluate spatial learning and memory ability of middle cerebral artery occlusion (MCAO) rats. TTC staining was used to observe the area of cerebral infarction. The expressions of inflammatory factors in serum were detected by ELISA. TUNEL assay, HE staining, and transmission electron microscopy were used to detect the apoptosis of neurons, neuro-cytopathic changes, and the formation of auto-phagosome in hippocampus CA1 region, respectively. The mRNA and protein expression of Beclin-1, Caspase-3, and light chain 3 (LC3) were detected by qRT-PCR and Western blot. Moreover, the activity of C-Jun N-terminal kinase (JNK) pathway was detected by Western blot. The escape latency (EL); cerebral infarction area ratio; positive apoptosis; neuron pathological changes; auto-phagosome numbers; inflammatory factor contents; mRNA and protein expressions of Beclin-1, Caspase-3 and LC3II/I; and the phosphorylation level of JNK were decreased, while the times across platform and the times stayed in the quadrant of the original platform were increased after dexmedetomidine treatment. However, the protective effect of dexmedetomidine on brain injury in MCAO rats was reversed by JNK pathway activator. Dexmedetomidine post-conditioning could improve learning and memory dysfunction caused by MCAO in rats and reduce the inflammatory response and autophagy effect. The mechanism may be related to inhibition of JNK pathway activation.


Dexmedetomidine Ischemia reperfusion injury JNK signaling pathway Autophagy Inflammation 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chen, F.Y., X.Y. Fang, and H. Zhang. 2018. Effect of polydatin on expression of p53 and Notch1 in brain tissue of ischemic cerebrovascular disease. Journal of Biological Regulators and Homeostatic Agents 32 (1): 133.PubMedGoogle Scholar
  2. 2.
    Hartley, A., D.C. Marshall, J.D. Salciccioli, M.B. Sikkel, M. Maruthappu, and J. Shalhoub. 2016. Trends in mortality from ischemic heart disease and cerebrovascular disease in EuropeClinical PERSPECTIVE: 1980 to 2009. Circulation 133 (20): 1916–1926.CrossRefGoogle Scholar
  3. 3.
    Balestrino, M., M. Sarocchi, E. Adriano, and P. Spallarossa. 2016. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids 48 (8): 1955–1967.CrossRefGoogle Scholar
  4. 4.
    Wang, M., J. Wang, Z. Liu, X. Guo, N. Wang, N. Jia, Y. Zhang, and J. Yuan. 2017. Effects of intermedin on autophagy in cerebral ischemia/reperfusion injury. Neuropeptides 68: 15-21.CrossRefGoogle Scholar
  5. 5.
    Morselli, E., M.C. Maiuri, M. Markaki, E. Megalou, A. Pasparaki, K. Palikaras, A. Criollo, L. Galluzzi, S.A. Malik, and I. Vitale. 2010. The life span-prolonging effect of Sirtuin-1 is mediated by autophagy. Autophagy 6 (1): 186–188.CrossRefGoogle Scholar
  6. 6.
    Bao, H., A. Benavides, Y. Shi, P. Frost, and A. Lichtenstein. 2009. Effect of autophagy on multiple myeloma cell viability. Molecular Cancer Therapeutics 8 (7): 1974.CrossRefGoogle Scholar
  7. 7.
    Dosenko, V.E., V.S. Nagibin, L.V. Tumanovska, and A.A. Moibenko. 2006. Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyocyte? Autophagy 2 (4): 305–306.CrossRefGoogle Scholar
  8. 8.
    Gu, Y., C. Wang, and A. Cohen. 2004. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Letters 577 (3): 357–360.CrossRefGoogle Scholar
  9. 9.
    Zhang, X., Y. Dong, X. Zeng, X. Liang, X. Li, W. Tao, H. Chen, Y. Jiang, L. Mei, and S.S. Feng. 2014. The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials 35 (6): 1932–1943.CrossRefGoogle Scholar
  10. 10.
    Lu, N., B. Wang, X. Deng, H. Zhao, Y. Wang, and D. Li. 2014. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis. Neural Regeneration Research 9 (17): 1599–1605.CrossRefGoogle Scholar
  11. 11.
    Wang, L., P. Wang, H. Dong, S. Wang, H. Chu, W. Yan, and X. Zhang. 2018. Ulk1/FUNDC1 prevents nerve cells from hypoxia-induced apoptosis by promoting cell autophagy. Neurochemical Research 43 (8): 1539–1548.CrossRefGoogle Scholar
  12. 12.
    Cherra, S.J., S.M. Kulich, G. Uechi, M. Balasubramani, J. Mountzouris, B.W. Day, and C.T. Chu. 2010. Regulation of the autophagy protein LC3 by phosphorylation. The Journal of Cell Biology 190 (4): 533–539.CrossRefGoogle Scholar
  13. 13.
    Tanida, I., N. Minematsu-Ikeguchi, T. Ueno, and E. Kominami. 2005. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1 (2): 84–91.CrossRefGoogle Scholar
  14. 14.
    Ashkenazi, A., C.F. Bento, T. Ricketts, M. Vicinanza, F. Siddiqi, M. Pavel, F. Squitieri, M.C. Hardenberg, S. Imarisio, and F.M. Menzies. 2017. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545 (7652): 108–111.CrossRefGoogle Scholar
  15. 15.
    Kawamura, N., A.M. Schmeichel, Y. Wang, J. Schmelzer, and P. Low. 2006. Multiple effects of hypothermia on inflammatory response following ischemia-reperfusion injury in experimental ischemic neuropathy. Experimental Neurology 202 (2): 487–496.CrossRefGoogle Scholar
  16. 16.
    Shin, I.W., I.S. Jang, S.M. Lee, K.E. Park, S.H. Ok, J.T. Sohn, H.K. Lee, and Y.K. Chung. 2011. Myocardial protective effect by ulinastatin via an anti-inflammatory response after regional ischemia/reperfusion injury in an in vivo rat heart model. Korean Journal of Anesthesiology 61 (6): 499–505.CrossRefGoogle Scholar
  17. 17.
    Prieto-Moure, B., J.M. Lloris-Carsí, M. Belda-Antolí, L.H. Toledo-Pereyra, and D. Cejalvo-Lapeña. 2016. Allopurinol protective effect of renal ischemia by downregulating TNF-α, IL-1β, and IL-6 response. Journal of Investigative Surgery 30 (3): 143–151.CrossRefGoogle Scholar
  18. 18.
    Xiang, Y., W. Ye, C. Huang, B. Lou, J. Zhang, D. Yu, X. Huang, B. Chen, and M. Zhou. 2017. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p38 MAPK/NF-κb/Stat3/Bcl-2 signaling pathway. Biochemical and Biophysical Research Communications 487 (4): 820–826.CrossRefGoogle Scholar
  19. 19.
    Zhong, L., Z.L. Zhang, X. Li, C. Liao, P. Mou, T. Wang, Z. Wang, Z. Wang, M. Wei, and H. Xu. 2017. TREM2/DAP12 complex regulates inflammatory responses in microglia via the JNK signaling pathway. Frontiers in Aging Neuroscience 9: 204.CrossRefGoogle Scholar
  20. 20.
    Ge, X.H., G.J. Zhu, D.Q. Geng, H.Z. Zhang, J.M. He, A.Z. Guo, L.L. Ma, and D.H. Yu. 2017. Metformin protects the brain against ischemia/reperfusion injury through PI3K/Akt1/JNK3 signaling pathways in rats. Physiology & Behavior 170: 115–123.CrossRefGoogle Scholar
  21. 21.
    Hoy, S.M., and G.M. Keating. 2011. Dexmedetomidine: a review of its use for sedation in mechanically ventilated patients in an intensive care setting and for procedural sedation. Drugs 71 (11): 1481–1501.CrossRefGoogle Scholar
  22. 22.
    Gu, J., P. Sun, H. Zhao, H.R. Watts, R.D. Sanders, N. Terrando, P. Xia, M. Maze, and D. Ma. 2011. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Critical Care 15 (3): R153.CrossRefGoogle Scholar
  23. 23.
    Ibacache, M., G. Sanchez, Z. Pedrozo, F. Galvez, C. Humeres, G. Echevarria, J. Duaso, M. Hassi, L. Garcia, and G. Díazaraya. 2012. Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochimica et Biophysica Acta 1822 (4): 537–545.CrossRefGoogle Scholar
  24. 24.
    Si, Y., H. Bao, L. Han, H. Shi, Y. Zhang, L. Xu, C. Liu, J. Wang, X. Yang, and A. Vohra. 2013. Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. Journal of Translational Medicine 11: 141.CrossRefGoogle Scholar
  25. 25.
    Yeda, X., L. Shaoqing, H. Yayi, Z. Bo, W. Huaxin, C. Hong, X. Zhongyuan, X. Yeda, L. Shaoqing, and H. Yayi. 2017. Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the P38-MAPK/TXNIP signaling activation in streptozotocin induced diabetic rats. Acta Cirúrgica Brasileira 32 (6): 429–439.CrossRefGoogle Scholar
  26. 26.
    Huang, J., X. Ye, Y. You, W. Liu, Y. Gao, S. Yang, J. Peng, Z. Hong, J. Tao, and L. Chen. 2014. Electroacupuncture promotes neural cell proliferation in vivo through activation of the ERK1/2 signaling pathway. International Journal of Molecular Medicine 33 (6): 1547–1553.CrossRefGoogle Scholar
  27. 27.
    Xie, G., S. Yang, A. Chen, L. Lan, Z. Lin, Y. Gao, J. Huang, J. Lin, J. Peng, and J. Tao. 2013. Electroacupuncture at Quchi and Zusanli treats cerebral ischemia-reperfusion injury through activation of ERK signaling. Experimental and Therapeutic Medicine 5 (6): 1593–1597.CrossRefGoogle Scholar
  28. 28.
    Cheng, J., P. Zhu, H. Qin, X. Li, H. Yu, H. Yu, and X. Peng. 2018. Dexmedetomidine attenuates cerebral ischemia/reperfusion injury in neonatal rats by inhibiting TLR4 signaling. The Journal of International Medical Research 46 (7): 2925–2932.CrossRefGoogle Scholar
  29. 29.
    Dong, J., X. Guo, S. Yang, and L. Li. 2017. The effects of dexmedetomidine preconditioning on aged rat heart of ischaemia reperfusion injury. Research in Veterinary Science 114: 489–492.CrossRefGoogle Scholar
  30. 30.
    Riquelme, J.A., F. Westermeier, A.R. Hall, J.M. Vicencio, Z. Pedrozo, M. Ibacache, B. Fuenzalida, L. Sobrevia, S.M. Davidson, and D.M. Yellon. 2016. Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism. Pharmacological Research 103: 318–327.CrossRefGoogle Scholar
  31. 31.
    Li, W.L., S.P. Yu, D. Chen, S.S. Yu, Y.J. Jiang, T. Genetta, and L. Wei. 2013. The regulatory role of NF-κB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience 244: 16–30.CrossRefGoogle Scholar
  32. 32.
    Zheng, Y., J. Hou, J. Liu, M. Yao, L. Li, B. Zhang, H. Zhu, and Z. Wang. 2014. Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. Journal of Pharmacological Sciences 124 (3): 354–364.CrossRefGoogle Scholar
  33. 33.
    Eskelinen, E.L., F. Reggiori, M. Baba, A.L. Kovács, and P.O. Seglen. 2011. Seeing is beieving: the impact of electron microscopy on autophagy research. Autophagy 7 (9): 935–956.CrossRefGoogle Scholar
  34. 34.
    Kang, R., H.J. Zeh, M.T. Lotze, and D. Tang. 2011. The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation 18 (4): 571–580.CrossRefGoogle Scholar
  35. 35.
    Wang, C.P., Y.W. Shi, M. Tang, X.C. Zhang, Y. Gu, X.M. Liang, Z.W. Wang, and F. Ding. 2017. Isoquercetin ameliorates cerebral impairment in focal ischemia through anti-oxidative, anti-inflammatory, and anti-apoptotic effects in primary culture of rat hippocampal neurons and hippocampal CA1 region of rats. Molecular Neurobiology 54 (3): 2126–2142.CrossRefGoogle Scholar
  36. 36.
    Haberzettl, P., and B.G. Hill. 2013. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biology 1: 56–64.CrossRefGoogle Scholar
  37. 37.
    Zhou, Y.Y., Y. Li, W.Q. Jiang, and L.F. Zhou. 2015. MAPK/JNK signalling: a potential autophagy regulation pathway. Bioscience Reports 35: 3.CrossRefGoogle Scholar
  38. 38.
    Gomez-Sanchez, J.A., L. Carty, M. Iruarrizaga-Lejarreta, M. Palomo-Irigoyen, M. Varela-Rey, M. Griffith, J. Hantke, N. Macias-Camara, M. Azkargorta, and I. Aurrekoetxea. 2015. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. The Journal of Cell Biology 210 (1): 153–168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyYantaishan HospitalYantaiChina
  2. 2.Department of AnesthesiologyHaiyang People’s HospitalHaiyangChina
  3. 3.Department of ObstetricsYantaishan HospitalYantaiChina
  4. 4.Blood Purification CenterThe Second Hospital of Shandong UniversityJinanChina
  5. 5.Department of AnesthesiologyQilu Hospital of Shandong UniversityJinanChina
  6. 6.Departments of PainJinan Central Hospital Affiliated to Shandong UniversityJinanChina
  7. 7.Department of AnesthesiologyThe Second Hospital of Shandong UniversityJinanChina

Personalised recommendations