Advertisement

Inflammation

, Volume 42, Issue 6, pp 2048–2055 | Cite as

Protective Effect of Trans-chalcone Against High-Fat Diet-Induced Pulmonary Inflammation Is Associated with Changes in miR-146a And pro-Inflammatory Cytokines Expression in Male Rats

  • Elham Karimi-Sales
  • Mohammad Reza Alipour
  • Roya Naderi
  • Elham Hosseinzadeh
  • Rafigheh GhiasiEmail author
Original Article
  • 85 Downloads

Abstract

High-fat diet (HFD) increases the risk of non-communicable inflammatory diseases including pulmonary disorders. Trans-chalcone is a chalcone with antioxidant and anti-inflammatory effects. This study aimed to explore the effect of this natural compound and molecular mechanism of its effect on HFD-induced pulmonary inflammation. Twenty-eight male Wistar rats were randomly divided into four main groups (n = 7 per each group): control, receiving 10% tween 80; Chal, receiving trans-chalcone, HFD, receiving a high-fat emulsion and 10% tween 80; HFD + Chal, receiving a high-fat emulsion and trans-chalcone. After 6 weeks, the lungs were dissected, and the expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and miR-146a were determined using real-time PCR. Moreover, histological analysis was done by hematoxylin and eosin staining. Significant elevations in TNF-α, IL-1β, IL-6, and miR-146a expression levels (P < 0.001) were observed within the lungs of HFD-fed rats compared with the control. However, oral administration of trans-chalcone reduced TNF-α, IL-1β, IL-6 (P < 0.001), and miR-146a (P < 0.05) expression levels and also improved HFD-induced histological abnormalities. These findings indicate that trans-chalcone ameliorates lung inflammatory response and structural alterations. It seems that this beneficial effect is associated with the down-regulation of pro-inflammatory cytokines and miR-146a.

KEY WORDS

trans-chalcone lung high-fat diet TNF-α IL-1β IL-6 

Notes

Acknowledgments

The authors are thankful to Dr. Abbas Ebrahimi-Kalan for his assistance in histological study.

Funding Information

This work was supported by a grant from the Tuberculosis and Lung Diseases Research Center of Tabriz University of Medical Sciences, Tabriz, Iran.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Akhavanakbari, G., B. Babapour, M.R. Alipour, R. Keyhanmanesh, M. Ahmadi, and M.R. Aslani. 2019. Effect of high fat diet on NF-кB microRNA146a negative feedback loop in ovalbumin-sensitized rats. Biofactors 45 (1): 75–84.  https://doi.org/10.1002/biof.1466.CrossRefPubMedGoogle Scholar
  2. 2.
    Aksöz, B.E., and R. Ertan. 2011. Chemical and structural properties of Chalcones I. FABAD Journal of Pharmaceutical Sciences 36: 223–242.Google Scholar
  3. 3.
    Alipoor, S.D., I.M. Adcock, J. Garssen, E. Mortaz, M. Varahram, M. Mirsaeidi, and A. Velayati. 2016. The roles of miRNAs as potential biomarkers in lung diseases. European Journal of Pharmacology 791: 395–404.  https://doi.org/10.1016/j.ejphar.2016.09.015.CrossRefPubMedGoogle Scholar
  4. 4.
    Aslani, M.R., R. Keyhanmanesh, A.M. Khamaneh, M.A. Ebrahimi Saadatlou, M. Mesgari Abbasi, and M.R. Alipour. 2016. Lung altered expression of IL-1beta mRNA and its signaling pathway molecules in obese-asthmatic male Wistar rats. Iranian Journal of Allergy, Asthma and Immunology 15 (3): 183–197.Google Scholar
  5. 5.
    Bartel, D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116 (2): 281–297.CrossRefGoogle Scholar
  6. 6.
    Broide, D. 2008. New perspectives on mechanisms underlying chronic allergic inflammation and asthma in 2007. Journal of Allergy and Clinical Immunology 122 (3): 475–480.  https://doi.org/10.1016/j.jaci.2008.06.025.CrossRefPubMedGoogle Scholar
  7. 7.
    Calixto, M.C., L. Lintomen, D.M. Andre, L.O. Leiria, D. Ferreira, C. Lellis-Santos, G.F. Anhe, S. Bordin, R.G. Landgraf, and E. Antunes. 2013. Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice. PLoS One 8 (10): e76786.  https://doi.org/10.1371/journal.pone.0076786.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chartoumpekis, D.V., A. Zaravinos, P.G. Ziros, R.P. Iskrenova, A.I. Psyrogiannis, V.E. Kyriazopoulou, and I.G. Habeos. 2012. Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One 7 (4): e34872.  https://doi.org/10.1371/journal.pone.0034872.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chu, B., Y. Zhou, H. Zhai, L. Li, L. Sun, and Y. Li. 2018. The role of microRNA-146a in regulating the expression of IRAK1 in cerebral ischemia-reperfusion injury. Canadian Journal of Physiology and Pharmacology 96 (6): 611–617.  https://doi.org/10.1139/cjpp-2017-0586.CrossRefPubMedGoogle Scholar
  10. 10.
    Cornett, A.L., and C.S. Lutz. 2014. Regulation of COX-2 expression by miR-146a in lung cancer cells. Rna 20 (9): 1419–1430.  https://doi.org/10.1261/rna.044149.113.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dournes, G., and F. Laurent. 2012. Airway Remodelling in asthma and COPD: Findings, similarities, and differences using quantitative CT. Pulmonary Medicine 2012: 670414–670418.  https://doi.org/10.1155/2012/670414.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hadjicharalambous, M.R., B.T. Roux, C.A. Feghali-Bostwick, L.A. Murray, D.L. Clarke, and M.A. Lindsay. 2018. Long non-coding RNAs are central regulators of the IL-1beta-induced inflammatory response in Normal and idiopathic pulmonary lung fibroblasts. Frontiers in Immunology 9: 2906.  https://doi.org/10.3389/fimmu.2018.02906.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Innis, S.M. 2007. Dietary lipids in early development: Relevance to obesity, immune and inflammatory disorders. Current Opinion in Endocrinology, Diabetes and Obesity 14 (5): 359–364.  https://doi.org/10.1097/MED.0b013e3282be90b9.CrossRefGoogle Scholar
  14. 14.
    Jalalvand, F., M.M. Amoli, P. Yaghmaei, M. Kimiagar, and A. Ebrahim-Habibi. 2015. Acarbose versus trans-chalcone: Comparing the effect of two glycosidase inhibitors on obese mice. Archives of Endocrinology and Metabolism 59 (3): 202–209.  https://doi.org/10.1590/2359-3997000000038.CrossRefPubMedGoogle Scholar
  15. 15.
    Karimi-Sales, E., S. Jeddi, A. Ebrahimi-Kalan, and M.R. Alipour. 2018. Trans-chalcone enhances insulin sensitivity through the miR-34a/SIRT1 pathway. Iranian Journal of Basic Medical Sciences 21 (4): 359–363.  https://doi.org/10.22038/ijbms.2018.24300.6063.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Karimi-Sales, E., A. Ebrahimi-Kalan, and M.R. Alipour. 2019. Preventive effect of trans-chalcone on non-alcoholic steatohepatitis: Improvement of hepatic lipid metabolism. Biomedicine & Pharmacotherapy 109: 1306–1312.  https://doi.org/10.1016/j.biopha.2018.10.196.CrossRefGoogle Scholar
  17. 17.
    Karimi-Sales, E., S. Jeddi, A. Ebrahimi-Kalan, and M.R. Alipour. 2018. Trans-Chalcone prevents insulin resistance and hepatic inflammation and also promotes hepatic cholesterol efflux in high-fat diet-fed rats: Modulation of miR-34a-, miR-451-, and miR-33a-related pathways. Food & Function 9 (8): 4292–4298.  https://doi.org/10.1039/c8fo00923f.CrossRefGoogle Scholar
  18. 18.
    Karimi-Sales, E., G. Mohaddes, and M.R. Alipour. 2018. Chalcones as putative hepatoprotective agents: Preclinical evidence and molecular mechanisms. Pharmacological Research 129: 177–187.  https://doi.org/10.1016/j.phrs.2017.11.022.CrossRefPubMedGoogle Scholar
  19. 19.
    Karkeni, E., L. Bonnet, J. Marcotorchino, F. Tourniaire, J. Astier, J. Ye, and J.F. Landrier. 2018. Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D. Epigenetics 13 (2): 156–162.  https://doi.org/10.1080/15592294.2016.1276681.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kumar, S., and A.K. Pandey. 2013. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal 2013: 162750–162716.  https://doi.org/10.1155/2013/162750.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lu, F.L., R.A. Johnston, L. Flynt, T.A. Theman, R.D. Terry, I.N. Schwartzman, A. Lee, and S.A. Shore. 2006. Increased pulmonary responses to acute ozone exposure in obese db/db mice. American Journal of Physiology-Lung Cellular and Molecular Physiology 290 (5): L856–L865.  https://doi.org/10.1152/ajplung.00386.2005.CrossRefPubMedGoogle Scholar
  22. 22.
    Ludigs, K., V. Parfenov, R.A. Du Pasquier, and G. Guarda. 2012. Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. Cellular and Molecular Life Sciences 69 (20): 3395–3418.  https://doi.org/10.1007/s00018-012-0989-2.CrossRefPubMedGoogle Scholar
  23. 23.
    Maddox, L., and D.A. Schwartz. 2002. The pathophysiology of asthma. Annual Review of Medicine 53: 477–498.  https://doi.org/10.1146/annurev.med.53.082901.103921.CrossRefPubMedGoogle Scholar
  24. 24.
    Martin, M., and K. Resch. 1988. Interleukin 1: More than a mediator between leukocytes. Trends in Pharmacological Sciences 9 (5): 171–177.CrossRefGoogle Scholar
  25. 25.
    Martinez, R.M., F.A. Pinho-Ribeiro, D.L. Vale, V.S. Steffen, F.T.M.C. Vicentini, J.A. Vignoli, M.M. Baracat, S.R. Georgetti, W.A. Verri Jr., and R. Casagrande. 2017. Trans-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. Journal of Photochemistry and Photobiology. B, Biology 171: 139–146.  https://doi.org/10.1016/j.jphotobiol.2017.05.002. CrossRefPubMedGoogle Scholar
  26. 26.
    Meisgen, F., N. Xu Landen, A. Wang, B. Rethi, C. Bouez, M. Zuccolo, A. Gueniche, et al. 2014. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. The Journal of Investigative Dermatology 134 (7): 1931–1940.  https://doi.org/10.1038/jid.2014.89.CrossRefPubMedGoogle Scholar
  27. 27.
    Naura, A.S., C.P. Hans, M. Zerfaoui, Y. Errami, J. Ju, H. Kim, K. Matrougui, J.G. Kim, and A.H. Boulares. 2009. High-fat diet induces lung remodeling in ApoE-deficient mice: An association with an increase in circulatory and lung inflammatory factors. Laboratory investigation; a journal of technical methods and pathology 89 (11): 1243–1251.  https://doi.org/10.1038/labinvest.2009.98. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nowakowska, Z. 2007. A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry 42 (2): 125–137.CrossRefGoogle Scholar
  29. 29.
    Rodriguez, A., E. Vigorito, S. Clare, M.V. Warren, P. Couttet, D.R. Soond, S. van Dongen, R.J. Grocock, P.P. Das, E.A. Miska, D. Vetrie, K. Okkenhaug, A.J. Enright, G. Dougan, M. Turner, and A. Bradley. 2007. Requirement of bic/microRNA-155 for normal immune function. Science 316 (5824): 608–611.  https://doi.org/10.1126/science.1139253. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Roos, J., E. Enlund, J.B. Funcke, D. Tews, K. Holzmann, K.M. Debatin, M. Wabitsch, and P. Fischer-Posovszky. 2016. miR-146a-mediated suppression of the inflammatory response in human adipocytes. Scientific Reports 6: 38339.  https://doi.org/10.1038/srep38339.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sato, T., H. Baskoro, S.I. Rennard, K. Seyama, and K. Takahashi. 2015. MicroRNAs as therapeutic targets in lung disease: Prospects and challenges. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation 3 (1): 382–388.  https://doi.org/10.15326/jcopdf.3.1.2015.0160.CrossRefPubMedGoogle Scholar
  32. 32.
    Sato, Tadashi, Xiangde Liu, Amy Nelson, Masanori Nakanishi, Nobuhiro Kanaji, Xingqi Wang, Miok Kim, Yingji Li, Jianhong Sun, Joel Michalski, Amol Patil, Hesham Basma, Olaf Holz, Helgo Magnussen, and Stephen I. Rennard. 2010. Reduced miR-146a increases prostaglandin E2 in chronic obstructive pulmonary disease fibroblasts. American Journal of Respiratory and Critical Care Medicine 182 (8): 1020–1029.  https://doi.org/10.1164/rccm.201001-0055OC.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Singh, H., S. Sidhu, K. Chopra, and M.U. Khan. 2016. Hepatoprotective effect of trans-Chalcone on experimentally induced hepatic injury in rats: Inhibition of hepatic inflammation and fibrosis. Canadian Journal of Physiology and Pharmacology 94 (8): 879–887.  https://doi.org/10.1139/cjpp-2016-0071.CrossRefPubMedGoogle Scholar
  34. 34.
    Song, Y., Y. Yu, D. Wang, S. Chai, D. Liu, X. Xiao, and Y. Huang. 2015. Maternal high-fat diet feeding during pregnancy and lactation augments lung inflammation and remodeling in the offspring. Respiratory Physiology & Neurobiology 207: 1–6.  https://doi.org/10.1016/j.resp.2014.12.003.CrossRefGoogle Scholar
  35. 35.
    Staurengo-Ferrari, L., K.W. Ruiz-Miyazawa, F.A. Pinho-Ribeiro, V. Fattori, T.H. Zaninelli, S. Badaro-Garcia, S.M. Borghi, T.T. Carvalho, J.C. Alves-Filho, T.M. Cunha, F.Q. Cunha, R. Casagrande, and W.A. Verri Jr. 2018. Trans-Chalcone attenuates pain and inflammation in experimental acute gout arthritis in mice. Frontiers in Pharmacology 9: 1123.  https://doi.org/10.3389/fphar.2018.01123. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Taganov, K.D., M.P. Boldin, K.J. Chang, and D. Baltimore. 2006. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America 103 (33): 12481–12486.  https://doi.org/10.1073/pnas.0605298103.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang, F., Z. Zuo, K. Chen, J. Fang, H. Cui, G. Shu, Y. Zhou, Z. Chen, C. Huang, and W. Liu. 2018. Histopathological changes caused by inflammation and oxidative stress in diet-induced-obese mouse following experimental lung injury. Scientific Reports 8 (1): 14250.  https://doi.org/10.1038/s41598-018-32420-3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wu, W., and Y. Li. 2018. Lung injury caused by paraquat poisoning results in increased interleukin-6 and decreased microRNA-146a levels. Experimental and Therapeutic Medicine 16 (1): 406–412.  https://doi.org/10.3892/etm.2018.6153.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ye, E., and J.S. Jena. 2016. miR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators of inflammation 3958453: 1–9.  https://doi.org/10.1155/2016/3958453.CrossRefGoogle Scholar
  40. 40.
    Zeng, Z., H. Gong, Y. Li, K. Jie, C. Ding, Q. Shao, F. Liu, Y. Zhan, C. Nie, W. Zhu, and K. Qian. 2013. Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Experimental Lung Research 39 (7): 275–282.  https://doi.org/10.3109/01902148.2013.808285.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang, Y., T. Xu, B. Wu, H. Chen, Z. Pan, Y. Huang, L. Mei, Y. Dai, X. Liu, X. Shan, and G. Liang. 2017. Targeting myeloid differentiation protein 2 by the new chalcone L2H21 protects LPS-induced acute lung injury. Journal of Cellular and Molecular Medicine 21 (4): 746–757.  https://doi.org/10.1111/jcmm.13017.CrossRefPubMedGoogle Scholar
  42. 42.
    Zou, Yuhong, Jun Li, Chao Lu, Jianqing Wang, Jinfang Ge, Yan Huang, Lei Zhang, and Yuanyuan Wang. 2006. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sciences 79 (11): 1100–1107.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elham Karimi-Sales
    • 1
    • 2
  • Mohammad Reza Alipour
    • 1
  • Roya Naderi
    • 3
  • Elham Hosseinzadeh
    • 4
  • Rafigheh Ghiasi
    • 1
    • 2
    Email author
  1. 1.Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
  2. 2.Department of Physiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
  3. 3.Department of Physiology, Urmia Faculty of Medical Science, Nephrology and Kidney Transplant Research CenterUrmia University of Medical ScienceUrmiaIran
  4. 4.Department of Medical Genetic, Faculty of MedicineTabriz University of Medical SciencesTabrizIran

Personalised recommendations