pp 1–13 | Cite as

Salidroside Reduces Inflammation and Brain Injury After Permanent Middle Cerebral Artery Occlusion in Rats by Regulating PI3K/PKB/Nrf2/NFκB Signaling Rather than Complement C3 Activity

  • X. Zhang
  • W. Lai
  • X. Ying
  • L. Xu
  • K. Chu
  • J. Brown
  • L. Chen
  • G. HongEmail author
Original Article


Salidroside, an active constituent of Rhodiola rosea, is neuroprotective after transient middle cerebral artery occlusion (tMCAO). However, its effects in other experimental stroke models are less understood. Here, we investigated the effect of daily intraperitoneal injections of salidroside in rats after permanent MCAO (pMCAO). Cerebral infarct volumes at 1 day after pMCAO were significantly reduced by treatment with 100 mg/kg/day salidroside, but not by 25 or 50 mg/kg/day, and this benefit of salidroside increased significantly over at least 7 days of treatment, when it was also accompanied by decreased neurological deficit scores. These observations led us to investigate the underlying mechanism of action of salidroside. 100 mg/kg salidroside for 1 day increased NeuN, Nrf2, and its downstream mediator HO-1, while it reduced nuclear NFκB p50, IL-6, and TNFα. Brusatol, a Nrf2 inhibitor, blocked the actions of salidroside on Nrf2, NFκB p50, IL-6, and TNFα. Salidroside also increased the ratio of p-PKB/PKB at 1 day after pMCAO even in the presence of brusatol. LY294002, a PI3K inhibitor, prevented all these effects of salidroside, including those on NeuN, p-PKB/PKB, Nrf2, HO-1, and pro-inflammatory mediators. In contrast, salidroside had no significant effect on the level of cerebral complement C3 after pMCAO, or on the activity of C3 as measured by the expression of cerebral Egr1. Our findings therefore suggest that salidroside reduces neuroinflammation and neural damage by regulating the PI3K/PKB/Nrf2/NFκB signaling pathway after pMCAO, and that this neuroprotective effect does not involve modulation of complement C3 activity.


Complement C3 Inflammation Ischemic stroke Neuroprotection Nrf2 Salidroside 



The authors thank the staff in the Animal Center of the Fujian University of TCM for their technical support.

Funding Information

This work was supported by the National Natural Science Foundation of China (projects 81473382 and 81603323), by the Collaborative Innovation Center for Rehabilitation Technology of Fujian University of TCM, and by the TCM Rehabilitation Research of SATCM (X2018002-Collaborative).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

10753_2019_1045_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)
10753_2019_1045_MOESM2_ESM.docx (183 kb)
ESM 2 (DOCX 182 kb)


  1. 1.
    Dimpfel, W., L. Schombert, and A.G. Panossian. 2018. Assessing the quality and potential efficacy of commercial extracts of Rhodiola rosea L. by analyzing the salidroside and rosavin content and the electrophysiological activity in hippocampal long-term potentiation, a synaptic model of memory. Frontiers in Pharmacology 9: 425.CrossRefGoogle Scholar
  2. 2.
    Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of Salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21 (4): 358–367.CrossRefGoogle Scholar
  3. 3.
    Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28 (2): 108–121.CrossRefGoogle Scholar
  4. 4.
    Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40 (4): 1297–1309.CrossRefGoogle Scholar
  5. 5.
    Han, J., Q. Xiao, Y.H. Lin, Z.Z. Zheng, Z.D. He, J. Hu, and L.D. Chen. 2015. Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway. Neural Regeneration Research 10 (12): 1989–1996.CrossRefGoogle Scholar
  6. 6.
    Lai, W., H. Hong, X. Zhang, X. Xie, X. Ying, L. Xu, and G. Hong. 2016. Inhibitive effect of salidroside on nerve cell apoptosis in MCAO rat through an activation of PI3K/AKT/NRF2 pathway. China Journal of Tradition Chinese Medicine and Pharmacy 31 (05): 1883–1886.Google Scholar
  7. 7.
    Lai, W., X. Xie, X. Zhang, Y. Wang, K. Chu, J. Brown, L. Chen, and G. Hong. 2018. Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by salidroside after cerebral ischemia. Inflammation 41 (2): 449–463.CrossRefGoogle Scholar
  8. 8.
    Peters, O., T. Back, U. Lindauer, C. Busch, D. Megow, J. Dreier, and U. Dirnagl. 1998. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. Journal Cerebral Blood Flow and Metabolism 18 (2): 196–205.CrossRefGoogle Scholar
  9. 9.
    Zhou, W., A. Liesz, H. Bauer, C. Sommer, B. Lahrmann, N. Valous, N. Grabe, and R. Veltkamp. 2013. Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathology 23 (1): 34–44.CrossRefGoogle Scholar
  10. 10.
    Shirley, R., E.N. Ord, and L.M. Work. 2014. Oxidative stress and the use of antioxidants in stroke. Antioxidants (Basel) 3 (3): 472–501.CrossRefGoogle Scholar
  11. 11.
    Drieu, A., D. Levard, D. Vivien, and M. Rubio. 2018. Anti-inflammatory treatments for stroke: From bench to bedside. Therapeutic Advances in Neurological Disorders 11: 1756286418789854.CrossRefGoogle Scholar
  12. 12.
    Moi, P., K. Chan, I. Asunis, A. Cao, and Y.W. Kan. 1994. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America 91 (21): 9926–9930.CrossRefGoogle Scholar
  13. 13.
    Itoh, K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, and Y. Nabeshima. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications 236 (2): 313–322.CrossRefGoogle Scholar
  14. 14.
    Shah, Z.A., R.C. Li, A.S. Ahmad, T.W. Kensler, M. Yamamoto, S. Biswal, and S. Dore. 2010. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. Journal Cerebral Blood Flow and Metabolism 30 (12): 1951–1961.CrossRefGoogle Scholar
  15. 15.
    Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: A key role in inflammatory diseases. Journal of Clinical Investigation 107 (1): 7–11.CrossRefGoogle Scholar
  16. 16.
    Nguyen, T., H.C. Huang, and C.B. Pickett. 2000. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. Journal of Biological Chemistry 275 (20): 15466–15473.CrossRefGoogle Scholar
  17. 17.
    Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annual Review of Immunology 18: 621–663.CrossRefGoogle Scholar
  18. 18.
    Wardyn, J.D., A.H. Ponsford, and C.M. Sanderson. 2015. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochemical Society Transactions 43 (4): 621–626.CrossRefGoogle Scholar
  19. 19.
    Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20 (1): 84–91.CrossRefGoogle Scholar
  20. 20.
    Zhao, H., T. Shimohata, J.Q. Wang, G. Sun, D.W. Schaal, R.M. Sapolsky, and G.K. Steinberg. 2005. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. Journal of Neuroscience 25 (42): 9794–9806.CrossRefGoogle Scholar
  21. 21.
    Olayanju, A., I.M. Copple, H.K. Bryan, G.T. Edge, R.L. Sison, M.W. Wong, Z.Q. Lai, Z.X. Lin, K. Dunn, C.M. Sanderson, A.F. Alghanem, M.J. Cross, E.C. Ellis, M. Ingelman-Sundberg, H.Z. Malik, N.R. Kitteringham, C.E. Goldring, and B.K. Park. 2015. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radical Biology & Medicine 78: 202–212.CrossRefGoogle Scholar
  22. 22.
    Ren, D., N.F. Villeneuve, T. Jiang, T. Wu, A. Lau, H.A. Toppin, and D.D. Zhang. 2011. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proceedings of the National Academy of Sciences of the United States of America 108 (4): 1433–1438.CrossRefGoogle Scholar
  23. 23.
    Sironi, L., M. Cimino, U. Guerrini, A.M. Calvio, B. Lodetti, M. Asdente, W. Balduini, R. Paoletti, and E. Tremoli. 2003. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arteriosclerosis, Thrombosis, and Vascular Biology 23 (2): 322–327.CrossRefGoogle Scholar
  24. 24.
    Choi, A.M., and J. Alam. 1996. Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 15 (1): 9–19.CrossRefGoogle Scholar
  25. 25.
    Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J.D. Engel, and M. Yamamoto. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development 13 (1): 76–86.CrossRefGoogle Scholar
  26. 26.
    Li, M., T. Xu, F. Zhou, M. Wang, H. Song, X. Xiao, and B. Lu. 2018. Neuroprotective effects of four phenylethanoid glycosides on H(2)O(2)-induced apoptosis on PC12 cells via the Nrf2/ARE pathway. International Journal of Molecular Sciences 19 (4): E1135.CrossRefGoogle Scholar
  27. 27.
    Zheng, K., Z. Sheng, Y. Li, and H. Lu. 2014. Salidroside inhibits oxygen glucose deprivation (OGD)/re-oxygenation-induced H9c2 cell necrosis through activating of Akt-Nrf2 signaling. Biochemical and Biophysical Research Communications 451 (1): 79–85.CrossRefGoogle Scholar
  28. 28.
    Cai, L., Y. Li, Q. Zhang, H. Sun, X. Yan, T. Hua, Q. Zhu, H. Xu, and H. Fu. 2017. Salidroside protects rat liver against ischemia/reperfusion injury by regulating the GSK-3beta/Nrf2-dependent antioxidant response and mitochondrial permeability transition. European Journal of Pharmacology 806: 32–42.CrossRefGoogle Scholar
  29. 29.
    Lu, H., Y. Li, T. Zhang, M. Liu, Y. Chi, S. Liu, and Y. Shi. 2017. Salidroside reduces high-glucose-induced podocyte apoptosis and oxidative stress via upregulating heme oxygenase-1 (HO-1) expression. Medical Science Monitor 23: 4067–4076.CrossRefGoogle Scholar
  30. 30.
    Shih, A.Y., P. Li, and T.H. Murphy. 2005. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. The Journal of Neuroscience 25 (44): 10321–10335.CrossRefGoogle Scholar
  31. 31.
    Chen, L., L. Wang, X. Zhang, L. Cui, Y. Xing, L. Dong, Z. Liu, Y. Li, X. Zhang, C. Wang, X. Bai, J. Zhang, L. Zhang, and X. Zhao. 2012. The protection by octreotide against experimental ischemic stroke: Up-regulated transcription factor Nrf2, HO-1 and down-regulated NF-kappaB expression. Brain Research 1475: 80–87.CrossRefGoogle Scholar
  32. 32.
    Clausen, B.H., L. Lundberg, M. Yli-Karjanmaa, N.A. Martin, M. Svensson, M.Z. Alfsen, S.B. Flaeng, K. Lyngso, A. Boza-Serrano, H.H. Nielsen, P.B. Hansen, B. Finsen, T. Deierborg, Z. Illes, and K.L. Lambertsen. 2017. Fumarate decreases edema volume and improves functional outcome after experimental stroke. Experimental Neurology 295: 144–154.CrossRefGoogle Scholar
  33. 33.
    Wang, Q., M. van Hoecke, X.N. Tang, H. Lee, Z. Zheng, R.A. Swanson, and M.A. Yenari. 2009. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiology of Disease 36 (1): 223–231.CrossRefGoogle Scholar
  34. 34.
    Pan, H., H. Wang, X. Wang, L. Zhu, and L. Mao. 2012. The absence of Nrf2 enhances NF-kappaB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators of Inflammation 2012: 217580.CrossRefGoogle Scholar
  35. 35.
    Malec, V., O.R. Gottschald, S. Li, F. Rose, W. Seeger, and J. Hanze. 2010. HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radical Biology & Medicine 48 (12): 1626–1635.CrossRefGoogle Scholar
  36. 36.
    Kim, T.H., E.G. Hur, S.J. Kang, J.A. Kim, D. Thapa, Y.M. Lee, S.K. Ku, Y. Jung, and M.K. Kwak. 2011. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Research 71 (6): 2260–2275.CrossRefGoogle Scholar
  37. 37.
    Zhao, R., J. Feng, and G. He. 2016. Hypoxia increases Nrf2-induced HO-1 expression via the PI3K/Akt pathway. Frontiers in Bioscience (Landmark edition) 21: 385–396.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Biomedical Research & DevelopmentFujian University of Traditional Chinese MedicineFuzhouChina

Personalised recommendations