Advertisement

Inflammation

pp 1–13 | Cite as

Severe Burn Injury Progression and Phasic Changes of Gene Expression in Mouse Model

  • Dan WuEmail author
  • Ming Zhou
  • Liang Li
  • Xiangfeng Leng
  • Zheng Zhang
  • Ning Wang
  • Yanwei Sun
ORIGINAL ARTICLE
  • 10 Downloads

Abstract

Patients with severe burns are susceptible to infectious complications including burn-site infections and sepsis. The purpose of this study was to explore the pathologic development of burn injury in a mouse model and to screen genes dysregulated at different time points on the basis of gene expression microarrays. Differential expression analysis identified a total 223 genes that related to only time progression independent of burn injury and 214 genes with aberrant expression due to burn injury. Weighted gene co-expression network analysis (WGCNA) of the 214 genes obtained seven gene modules which named as red, blue, turquoise, green, brown, yellow, and gray module, and the blue module was found to be significantly associated with severe burn injury progression, and in which several genes were previously reported being associated with inflammation and immune response, such as interleukin IL-6, IL-8, and IL-1b. Functional enrichment analysis indicated significant enrichment of biological processes that related to metabolism and catabolism, and pathways of proteasome, notch signaling and cell cycle. This result supports a phase progression of severe burn with gene expression changes and interpretation of biological processes in mouse.

KEY WORDS

Severe burn WGCNA Gene expression Pathway 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10753_2019_984_Fig6_ESM.png (146 kb)
ESM 1

(PNG 145 kb)

10753_2019_984_MOESM1_ESM.tif (990 kb)
High-resolution image (TIF 989 kb)
10753_2019_984_MOESM2_ESM.xlsx (13 kb)
ESM 2 (XLSX 13 kb)
10753_2019_984_MOESM3_ESM.xlsx (31 kb)
ESM 3 (XLSX 31 kb)

References

  1. 1.
    Evers, L.H., D. Bhavsar, and P. Mailander. 2010. The biology of burn injury. Experimental Dermatology 19 (9): 777–783.  https://doi.org/10.1111/j.1600-0625.2010.01105.x.Google Scholar
  2. 2.
    Lloyd, E.C., B.C. Rodgers, M. Michener, and M.S. Williams. 2012. Outpatient burns: prevention and care. American Family Physician 85 (1): 25–32.Google Scholar
  3. 3.
    Shen, H., P.E. de Almeida, K.H. Kang, P. Yao, and C.W. Chan. 2012. Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions. PLoS One 7 (11): e50238.  https://doi.org/10.1371/journal.pone.0050238.Google Scholar
  4. 4.
    Garner, W.L., and W. Magee. 2005. Acute burn injury. Clinics in Plastic Surgery 32 (2): 187–193.  https://doi.org/10.1016/j.cps.2004.11.002.Google Scholar
  5. 5.
    Cabral, L., V. Afreixo, R. Meireles, M. Vaz, C. Chaves, M. Caetano, et al. 2018. Checking procalcitonin suitability for prognosis and antimicrobial therapy monitoring in burn patients. Burns & Trauma 6: 10.  https://doi.org/10.1186/s41038-018-0112-5.Google Scholar
  6. 6.
    Bloemsma, G.C., J. Dokter, H. Boxma, and I.M. Oen. 2008. Mortality and causes of death in a burn centre. Burns: Journal of the International Society for Burn Injuries 34 (8): 1103–1107.  https://doi.org/10.1016/j.burns.2008.02.010. Google Scholar
  7. 7.
    Oppeltz, R.F., M. Rani, Q. Zhang, and M.G. Schwacha. 2011. Burn-induced alterations in toll-like receptor-mediated responses by bronchoalveolar lavage cells. Cytokine. 55 (3): 396–401.  https://doi.org/10.1016/j.cyto.2011.05.004.Google Scholar
  8. 8.
    Park, M.S., J. Salinas, C.E. Wade, J. Wang, W. Martini, A.E. Pusateri, G.A. Merrill, K. Chung, S.E. Wolf, and J.B. Holcomb. 2008. Combining early coagulation and inflammatory status improves prediction of mortality in burned and nonburned trauma patients. The Journal of Trauma 64 (2 Suppl): S188–S194.  https://doi.org/10.1097/TA.0b013e318160a5a3.Google Scholar
  9. 9.
    Rowan, M.P., L.C. Cancio, E.A. Elster, D.M. Burmeister, L.F. Rose, S. Natesan, R.K. Chan, R.J. Christy, and K.K. Chung. 2015. Burn wound healing and treatment: review and advancements. Critical Care 19 (1): 243.  https://doi.org/10.1186/s13054-015-0961-2. Google Scholar
  10. 10.
    Domergue, S., C. Jorgensen, and D. Noël. 2015. Advances in research in animal models of burn-related hypertrophic scarring. Journal of Burn Care & Research. 36 (5): e259–e266.  https://doi.org/10.1097/BCR.0000000000000167.Google Scholar
  11. 11.
    Lu, G., J. Huang, J. Yu, Y. Zhu, L. Cai, Z. Gu, and Q. Su. 2011. Influence of early post-burn enteral nutrition on clinical outcomes of patients with extensive burns. Journal of Clinical Biochemistry and Nutrition. 48 (3): 222–225.  https://doi.org/10.3164/jcbn.10-91.Google Scholar
  12. 12.
    Peng, D., W. Huang, S. Ai, and S. Wang. 2006. Clinical significance of leukocyte infiltrative response in deep wound of patients with major burns. Burns: Journal of the International Society for Burn Injuries 32 (8): 946–950.  https://doi.org/10.1016/j.burns.2006.03.003. Google Scholar
  13. 13.
    Barber, R.C., C.C. Aragaki, F.A. Rivera-Chavez, G.F. Purdue, J.L. Hunt, and J.W. Horton. 2004. TLR4 and TNF-alpha polymorphisms are associated with an increased risk for severe sepsis following burn injury. Journal of Medical Genetics. 41 (11): 808–813.  https://doi.org/10.1136/jmg.2004.021600. Google Scholar
  14. 14.
    Barber, R.C., L.Y. Chang, B.D. Arnoldo, G.F. Purdue, J.L. Hunt, J.W. Horton, et al. 2006. Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clinical Medicine & Research 4 (4): 250–255.Google Scholar
  15. 15.
    Tang, G., T. Zhang, X. Wang, Z. Song, F. Liu, Q. Zhang, et al. 2017. Analysis of differentially expressed genes in white blood cells isolated from patients with major burn injuries. Experimental and Therapeutic Medicine 14 (4): 2931–2936.  https://doi.org/10.3892/etm.2017.4899.Google Scholar
  16. 16.
    Ou, S., G.D. Liu, Y. Tan, L.S. Zhou, S.R. Bai, G. Xue, et al. 2015. A time course study about gene expression of post-thermal injury with DNA microarray. International Journal of Dermatology 54 (7): 757–764.  https://doi.org/10.1111/ijd.12534.Google Scholar
  17. 17.
    Takao, K., and T. Miyakawa. 2015. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences 112 (4): 1167–1172.  https://doi.org/10.1073/pnas.1401965111.Google Scholar
  18. 18.
    Yin, K., J.R. Deuis, R.J. Lewis, and I. Vetter. 2016. Transcriptomic and behavioural characterisation of a mouse model of burn pain identify the cholecystokinin 2 receptor as an analgesic target. Molecular Pain. 12: 1744806916665366.  https://doi.org/10.1177/1744806916665366. Google Scholar
  19. 19.
    Nakazawa, H., K. Chang, S. Shinozaki, T. Yasukawa, K. Ishimaru, S. Yasuhara, Y.M. Yu, J.J. Martyn, R.G. Tompkins, K. Shimokado, and M. Kaneki. 2017. iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: possible involvement of Sirt1 S-nitrosylation-mediated acetylation of p65 NF-κB and p53. PLoS One 12 (1): e0170391.  https://doi.org/10.1371/journal.pone.0170391.Google Scholar
  20. 20.
    Lederer, J.A., B.H. Brownstein, M.C. Lopez, S. MacMillan, A.J. Delisle, M.P. MacConmara, M.A. Choudhry, W. Xiao, S. Lekousi, J.P. Cobb, and H.V. Baker. 2008. Comparison of longitudinal leukocyte gene expression after burn injury or trauma-hemorrhage in mice. Physiological Genomics 32 (3): 299–310.  https://doi.org/10.1152/physiolgenomics.00086.2007.Google Scholar
  21. 21.
    Strang, S.G., E.M. Van Lieshout, R.S. Breederveld, and O.J. Van Waes. 2014. A systematic review on intra-abdominal pressure in severely burned patients. Burns: Journal of the International Society for Burn Injuries 40 (1): 9–16.  https://doi.org/10.1016/j.burns.2013.07.001. Google Scholar
  22. 22.
    Hardee, J.P., C. Porter, L.S. Sidossis, E. Borsheim, J.A. Carson, D.N. Herndon, et al. 2014. Early rehabilitative exercise training in the recovery from pediatric burn. Medicine and Science in Sports and Exercise 46 (9): 1710–1716.  https://doi.org/10.1249/MSS.0000000000000296.Google Scholar
  23. 23.
    Schwacha, M.G. 2003. Macrophages and post-burn immune dysfunction. Burns. 29 (1): 1–4.  https://doi.org/10.1016/S0305-4179(02)00187-0.Google Scholar
  24. 24.
    Moran, K., and A.M. Munster. 1987. Alterations of the host defense mechanism in burned patients. The Surgical Clinics of North America 67 (1): 47–56.  https://doi.org/10.1016/S0039-6109(16)44132-0.Google Scholar
  25. 25.
    Peter, F.W., D.A. Schuschke, J.H. Barker, B. Fleishcher-Peter, S. Pierangeli, P.M. Vogt, and H.U. Steinau. 1999. The effect of severe burn injury on proinflammatory cytokines and leukocyte behavior: its modulation with granulocyte colony-stimulating factor. Burns. 25 (6): 477–486.  https://doi.org/10.1016/S0305-4179(99)00036-4.Google Scholar
  26. 26.
    Kupper, T.S., E.A. Deitch, C.C. Baker, and W.C. Wong. 1986. The human burn wound as a primary source of interleukin-1 activity. Surgery. 100 (2): 409–415.Google Scholar
  27. 27.
    Nickoloff, B.J., G.D. Karabin, J.N. Barker, C.E. Griffiths, V. Sarma, R.S. Mitra, J.T. Elder, S.L. Kunkel, and V.M. Dixit. 1991. Cellular localization of interleukin-8 and its inducer, tumor necrosis factor-alpha in psoriasis. The American Journal of Pathology 138 (1): 129–140.Google Scholar
  28. 28.
    Sehgal, P.B. 1990. Interleukin-6: molecular pathophysiology. The Journal of Investigative Dermatology 94 (6 Suppl): 2S–6S.Google Scholar
  29. 29.
    Gosain, A., and R.L. Gamelli. 2005. A primer in cytokines. The Journal of Burn Care & Rehabilitation 26 (1): 7–12.Google Scholar
  30. 30.
    Hultman, C.S., L.M. Napolitano, B.A. Cairns, L.A. Brady, C. Campbell, S. deSerres, et al. 1995. The relationship between interferon-gamma and keratinocyte alloantigen expression after burn injury. Annals of Surgery 222 (3): 384–389 discussion 92-3.Google Scholar
  31. 31.
    Kock, A., T. Schwarz, R. Kirnbauer, A. Urbanski, P. Perry, J.C. Ansel, et al. 1990. Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. The Journal of Experimental Medicine 172 (6): 1609–1614.Google Scholar
  32. 32.
    Greco, J.A., 3rd, A.C. Pollins, B.E. Boone, S.E. Levy, and L.B. Nanney. 2010. A microarray analysis of temporal gene expression profiles in thermally injured human skin. Burns: Journal of the International Society for Burn Injuries 36 (2): 192–204.  https://doi.org/10.1016/j.burns.2009.06.211. Google Scholar
  33. 33.
    Feezor, R.J., H.N. Paddock, H.V. Baker, J.C. Varela, J. Barreda, L.L. Moldawer, et al. 2004. Temporal patterns of gene expression in murine cutaneous burn wound healing. Physiological Genomics 16 (3): 341–348.  https://doi.org/10.1152/physiolgenomics.00101.2003.Google Scholar
  34. 34.
    Heise, R., C. Skazik, Y. Marquardt, K. Czaja, K. Sebastian, P. Kurschat, et al. 2012. Dexpanthenol modulates gene expression in skin wound healing in vivo. Skin Pharmacology and Physiology 25 (5): 241–248.  https://doi.org/10.1159/000341144.Google Scholar
  35. 35.
    Zou, W., J.H. Kim, A. Handidu, X. Li, K.I. Kim, M. Yan, J. Li, and D.E. Zhang. 2007. Microarray analysis reveals that type I interferon strongly increases the expression of immune-response related genes in Ubp43 (Usp18) deficient macrophages. Biochemical and Biophysical Research Communications 356 (1): 193–199.  https://doi.org/10.1016/j.bbrc.2007.02.101.Google Scholar
  36. 36.
    Kempe, S., H. Kestler, A. Lasar, and T. Wirth. 2005. NF-κB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Research 33 (16): 5308–5319.  https://doi.org/10.1093/nar/gki836.Google Scholar
  37. 37.
    Moraru, M., E. Cisneros, N. Gómez-Lozano, R. de Pablo, F. Portero, M. Cañizares, M. Vaquero, G. Roustán, I. Millán, M. López-Botet, and C. Vilches. 2012. Host genetic factors in susceptibility to herpes simplex type 1 virus infection: contribution of polymorphic genes at the interface of innate and adaptive immunity. The Journal of Immunology 4: 1103434.  https://doi.org/10.4049/jimmunol.1103434.Google Scholar
  38. 38.
    Mbarek, H., Y. Milaneschi, J.J. Hottenga, L. Ligthart, E.J. de Geus, E.A. Ehli, G. Willemsen, G.E. Davies, J.H. Smit, D.I. Boomsma, and B.W. Penninx. 2017. Genome-wide significance for PCLO as a gene for major depressive disorder. Twin Research and Human Genetics 20 (4): 267–270.  https://doi.org/10.1017/thg.2017.30.Google Scholar
  39. 39.
    Zhan, H., J. Jiang, Q. Sun, A. Ke, J. Hu, Z. Hu, K. Zhu, C. Luo, N. Ren, J. Fan, and J. Zhou. 2017. Whole-exome sequencing-based mutational profiling of hepatitis B virus-related early-stage hepatocellular carcinoma. Gastroenterology Research and Practice.  https://doi.org/10.1155/2017/2029315.
  40. 40.
    Wang, Y., and D.N. Tatakis. 2017. Human gingiva transcriptome during wound healing. Journal of Clinical Periodontology 44 (4): 394–402.  https://doi.org/10.1111/jcpe.12669.Google Scholar
  41. 41.
    Son, E.Y., J.K. Ichida, B.J. Wainger, J.S. Toma, V.F. Rafuse, C.J. Woolf, and K. Eggan. 2011. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9 (3): 205–218.  https://doi.org/10.1016/j.stem.2011.07.014.Google Scholar
  42. 42.
    Sitniakowsky, L.S., A.F. Later, L.M. Van de Watering, M. Bogaerts, A. Brand, R.J. Klautz, N.P. Smit, and J.A. Van Hilten. 2011. The effect of RBC transfusions on cytokine gene expression after cardiac surgery in patients developing post-operative multiple organ failure. Transfusion Medicine 21 (4): 236–246.  https://doi.org/10.1111/j.1365-3148.2011.01075.x.Google Scholar
  43. 43.
    Alexander, J.W. 1990. Mechanism of immunologic suppression in burn injury. The Journal of Trauma 30 (12 Suppl): S70–S75.Google Scholar
  44. 44.
    Faunce, D.E., M.S. Gregory, and E.J. Kovacs. 1997. Effects of acute ethanol exposure on cellular immune responses in a murine model of thermal injury. Journal of Leukocyte Biology 62 (6): 733–740.Google Scholar
  45. 45.
    Gamelli, R.L., L.K. He, and H. Liu. 1994. Marrow granulocyte-macrophage progenitor cell response to burn injury as modified by endotoxin and indomethacin. The Journal of Trauma 37 (3): 339–346.Google Scholar
  46. 46.
    Hansbrough, J.F., R. Zapata-Sirvent, V. Peterson, X. Wang, E. Bender, H. Claman, et al. 1984. Characterization of the immunosuppressive effect of burned tissue in an animal model. The Journal of Surgical Research 37 (5): 383–393.Google Scholar
  47. 47.
    Miller, C.L., and C.C. Baker. 1979. Changes in lymphocyte activity after thermal injury. The role of suppressor cells. The Journal of Clinical Investigation 63 (2): 202–210.  https://doi.org/10.1172/JCI109290. Google Scholar
  48. 48.
    Wu, D., M. Zhou, L. Li, J. Ren, Y. Sun, N. Wang, and Z.Y. Chan. 2018. The time course pathological changes after burn injury. Inflammation 41 (5): 1864–1872.  https://doi.org/10.1007/s10753-018-0829-0.Google Scholar
  49. 49.
    Dinh, H.K., B. Zhao, S.T. Schuschereba, G. Merrill, and P.D. Bowman. 2001. Gene expression profiling of the response to thermal injury in human cells. Physiological Genomics 7 (1): 3–13.  https://doi.org/10.1152/physiolgenomics.2001.7.1.3.Google Scholar
  50. 50.
    Çakir, B., and B.C. Yeğen. 2004. Systemic responses to burn injury. Turkish Journal of Medical Sciences 34 (4): 215–226.Google Scholar
  51. 51.
    Lin, J., L. Feng, Y. Hamajima, M. Komori, T.C. Burns, S. Fukudome, J. Anderson, D. Wang, C.M. Verfaillie, and W.C. Low. 2009. Directed differentiation of mouse cochlear neural progenitors in vitro. American Journal of Physiology-Cell Physiology 296 (3): C441.  https://doi.org/10.1152/ajpcell.00324.2008.Google Scholar
  52. 52.
    de Melo, T.P., G.M. de Camargo, L.G. de Albuquerque, and R. Carvalheiro. 2017. Genome-wide association study provides strong evidence of genes affecting the reproductive performance of Nellore beef cows. PLoS One 12 (5): e0178551.  https://doi.org/10.1371/journal.pone.0178551.Google Scholar
  53. 53.
    Repertinger, S.K., E. Campagnaro, J. Fuhrman, T. El-Abaseri, S.H. Yuspa, and L.A. Hansen. 2004. EGFR enhances early healing after cutaneous incisional wounding. Journal of Investigative Dermatology 123 (5): 982–989.  https://doi.org/10.1111/j.0022-202X.2004.23478.x.Google Scholar
  54. 54.
    Ramelet, A.A., N. Hirt-Burri, W. Raffoul, C. Scaletta, D.P. Pioletti, E. Offord, R. Mansourian, and L.A. Applegate. 2009. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Experimental Gerontology 44 (3): 208–218.  https://doi.org/10.1016/j.exger.2008.11.004.Google Scholar
  55. 55.
    Slominski, A., T.W. Fischer, M.A. Zmijewski, J. Wortsman, I. Semak, B. Zbytek, R.M. Slominski, and D.J. Tobin. 2005. On the role of melatonin in skin physiology and pathology. Endocrine 27 (2): 137–147.  https://doi.org/10.1385/ENDO:27:2:137.Google Scholar
  56. 56.
    Albelda, S.M., C.W. Smith, and P.A. Ward. 1994. Adhesion molecules and inflammatory injury. The FASEB Journal 8 (8): 504–512.  https://doi.org/10.1096/fasebj.8.8.8181668.Google Scholar
  57. 57.
    Hu, X., M.G. Adebiyi, J. Luo, K. Sun, T.T. Le, Y. Zhang, H. Wu, S. Zhao, H. Karmouty-Quintana, H. Liu, and A. Huang. 2016. Sustained elevated adenosine via ADORA2B promotes chronic pain through neuro-immune interaction. Cell Reports 16 (1): 106–119.  https://doi.org/10.1016/j.celrep.2016.05.080.Google Scholar
  58. 58.
    Esselman, P.C., B.D. Thombs, G. Magyar-Russell, and J.A. Fauerbach. 2006. Burn rehabilitation: state of the science. American Journal of Physical Medicine & Rehabilitation 85 (4): 383–413.  https://doi.org/10.1097/01.phm.0000202095.51037.a3.Google Scholar
  59. 59.
    Bombaro, K.M., L.H. Engrav, G.J. Carrougher, S.A. Wiechman, L. Faucher, B.A. Costa, D.M. Heimbach, F.P. Rivara, and S. Honari. 2003. What is the prevalence of hypertrophic scarring following burns? Burns: Journal of the International Society for Burn Injuries 29 (4): 299–302.Google Scholar
  60. 60.
    Cheng-Hui, F.A., J.J. Wang, S. Hobler, B.G. Li, J.E. Fischer, and P.O. Hasselgren. 1998. Proteasome blockers inhibit protein breakdown in skeletal muscle after burn injury in rats. Clinical Science 95 (2): 225–233.  https://doi.org/10.1042/cs0950225.Google Scholar
  61. 61.
    Shi, Y., B. Shu, R. Yang, Y. Xu, B. Xing, J. Liu, L. Chen, S. Qi, X. Liu, P. Wang, and Tang J. Wnt. 2015. Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Research & Therapy 6 (1): 120.  https://doi.org/10.1186/s13287-015-0103-4.Google Scholar
  62. 62.
    Valenti, L.M., J. Mathieu, Y. Chancerelle, M. De Sousa, M. Levacher, A.T. Dinh-Xuan, and I. Florentin. 2005. High levels of endogenous nitric oxide produced after burn injury in rats arrest activated T lymphocytes in the first G1 phase of the cell cycle and then induce their apoptosis. Experimental Cell Research 306 (1): 150–167.  https://doi.org/10.1016/j.yexcr.2005.02.008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dan Wu
    • 1
    Email author
  • Ming Zhou
    • 2
  • Liang Li
    • 1
  • Xiangfeng Leng
    • 3
  • Zheng Zhang
    • 1
  • Ning Wang
    • 1
  • Yanwei Sun
    • 1
  1. 1.Department of Burn and Plastic SurgeryZibo Central HospitalZiboChina
  2. 2.Department of Joint SurgeryZibo Central HospitalZiboChina
  3. 3.Department of Plastic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina

Personalised recommendations