Advertisement

Inflammation

pp 1–11 | Cite as

Silencing of STAT4 Protects Against Autoimmune Myocarditis by Regulating Th1/Th2 Immune Response via Inactivation of the NF-κB Pathway in Rats

  • Yu-Long Xue
  • Sheng-Xiao Zhang
  • Chao-Feng Zheng
  • Yu-Feng Li
  • Li-Hui Zhang
  • Yu-Fei Hao
  • Shu Wang
  • Xue-Wen LiEmail author
ORIGINAL ARTICLE
  • 54 Downloads

Abstract

Signal transducer and activator of transcription 4 (STAT4) has been implicated in the progression of myocarditis. The aim of the current study was to investigate the role by which STAT4 influences autoimmune myocarditis in an attempt to identify a theoretical therapeutic perspective for the condition. After successful establishment of an autoimmune myocarditis rat model, the expression patterns of STAT4, NF-κB pathway–related genes, Th1 inflammatory cytokines (IFN-γ and IL-2), and Th2 inflammatory cytokines (IL-6 and IL-10) were subsequently determined. The rats with autoimmune myocarditis were treated with oe-STAT4 or sh-STAT4 lentiviral vectors to evaluate the role of STAT4 in autoimmune myocarditis, or administrated with 1 mL 10 μmol/L of BAY11-7082 (the NF-κB pathway inhibitor) via tail vein to investigate the effect of the NF-κB pathway on autoimmune myocarditis. Finally, cell apoptosis was evaluated. The serum levels of IFN-γ and IL-2, extent of IκBα and P65 phosphorylation, and the expression of STAT4 were elevated, while the serum levels of IL-6 and IL-10 as well as the expression of IκBα were reduced among the rats with autoimmune myocarditis, which was accompanied by an increase in the apoptotic cells. More importantly, the silencing of STAT4 or the inhibition of the NF-κB pathway was detected to result in a decrease in the serum levels of IFN-γ and IL-2 and an elevation of the serum levels of IL-6 and IL-10, and inhibited myocardial cell apoptosis in rats with autoimmune myocarditis. Moreover, STAT4 silencing was also observed to decrease the extent of IκBα and P65 phosphorylation while acting to elevate the expression of IκBα. Taken together, silencing of STAT4 could hinder the progression of autoimmune myocarditis by balancing the expression of Th1/Th2 inflammatory cytokines via the NF-κB pathway, which may provide a novel target for experimental autoimmune myocarditis (EAM) treatment.

Key Words

signal transducer and activator of transcription 4 NF-κB pathway autoimmune myocarditis Th1/2 cytokines 

Notes

Acknowledgements

We acknowledge and appreciate our colleagues for their valuable efforts and comments on this paper.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no conflict of interest.

Supplementary material

10753_2019_978_MOESM1_ESM.png (175 kb)
ESM 1 (PNG 174 kb)

References

  1. 1.
    Wu, B., H. Ni, J. Li, X. Zhuang, J. Zhang, Z. Qi, Q. Chen, Z. Wen, H. Shi, X. Luo, and B. Jin. 2017. The impact of circulating mitochondrial DNA on cardiomyocyte apoptosis and myocardial injury after TLR4 activation in experimental autoimmune myocarditis. Cellular Physiology and Biochemistry 42 (2): 713–728.CrossRefGoogle Scholar
  2. 2.
    Lee, J.H., T.H. Kim, H.E. Park, E.G. Lee, N.C. Jung, J.Y. Song, H.G. Seo, K.B. Seung, K. Chang, and D.S. Lim. 2014. Myosin-primed tolerogenic dendritic cells ameliorate experimental autoimmune myocarditis. Cardiovascular Research 101 (2): 203–210.CrossRefGoogle Scholar
  3. 3.
    Steinl, D. C., L. Xu, E. Khanicheh, E. Ellertsdottir, A. Ochoa-Espinosa, M. Mitterhuber, K. Glatz, G. M. Kuster, B. A. Kaufmann 2016. Noninvasive contrast-enhanced ultrasound molecular imaging detects myocardial inflammatory response in autoimmune myocarditis. Circulation. Cardiovascular Imaging 9(8).Google Scholar
  4. 4.
    Nana-Leventaki, E., M. Nana, N. Poulianitis, D. Sampaziotis, D. Perrea, D. Sanoudou, et al. 2018. Cardiosphere-derived cells attenuate inflammation, preserve systolic function, and prevent adverse remodeling in rat hearts with experimental autoimmune myocarditis. Journal of Cardiovascular Pharmacology and Therapeutics.  https://doi.org/10.1177/1074248418784287.
  5. 5.
    Zhao, M., J. Wu, X. Li, and Y. Gao. 2018. Urinary candidate biomarkers in an experimental autoimmune myocarditis rat model. Journal of Proteomics 179: 71–79.CrossRefGoogle Scholar
  6. 6.
    Gonnella, P.A., P.J. Del Nido, and F.X. McGowan. 2009. Oral tolerization with cardiac myosin peptide (614-629) ameliorates experimental autoimmune myocarditis: role of STAT 6 genes in BALB/CJ mice. Journal of Clinical Immunology 29 (4): 434–443.CrossRefGoogle Scholar
  7. 7.
    Karuppagounder, V., A. Bajpai, S. Meng, S. Arumugam, R. Sreedhar, V.V. Giridharan, A. Guha, A. Bhimaraj, K.A. Youker, S.S. Palaniyandi, H. Karmouty-Quintana, F. Kamal, K.L. Spiller, K. Watanabe, and R.A. Thandavarayan. 2018. Small molecule disruption of G protein betagamma subunit signaling reprograms human macrophage phenotype and prevents autoimmune myocarditis in rats. PLoS One 13 (7): e0200697.CrossRefGoogle Scholar
  8. 8.
    Varikuti, S., S. Oghumu, G. Natarajan, J. Kimble, R.H. Sperling, E. Moretti, M.H. Kaplan, and A.R. Satoskar. 2016. STAT4 is required for the generation of Th1 and Th2, but not Th17 immune responses during monophosphoryl lipid A adjuvant activity. International Immunology 28 (11): 565–570.CrossRefGoogle Scholar
  9. 9.
    Liu, X., X. Zhang, L. Ye, and H. Yuan. 2016. Protective mechanisms of berberine against experimental autoimmune myocarditis in a rat model. Biomedicine & Pharmacotherapy 79: 222–230.CrossRefGoogle Scholar
  10. 10.
    Massilamany, C., A. Gangaplara, R.H. Basavalingappa, R.A. Rajasekaran, V. Khalilzad-Sharghi, Z. Han, S. Othman, D. Steffen, and J. Reddy. 2016. Localization of CD8 T cell epitope within cardiac myosin heavy chain-alpha334-352 that induces autoimmune myocarditis in A/J mice. International Journal of Cardiology 202: 311–321.CrossRefGoogle Scholar
  11. 11.
    Shi, Y., H. Pan, H.Z. Zhang, X.Y. Zhao, J. Jin, and H.Y. Wang. 2017. Lipoxin A4 mitigates experimental autoimmune myocarditis by regulating inflammatory response, NF-kappaB and PI3K/Akt signaling pathway in mice. European Review for Medical and Pharmacological Sciences 21 (8): 1850–1859.Google Scholar
  12. 12.
    Murakami, U., K. Uchida, and T. Hiratsuka. 1976. Cardiac myosin from pig heart ventricle. Journal of Biochemistry 80 (3): 611–619.CrossRefGoogle Scholar
  13. 13.
    Lv, S., M. Wu, M. Li, Q. Wang, L. Xu, X. Wang, and J. Zhang. 2016. Effect and mechanism of QiShenYiQi pill on experimental autoimmune myocarditis rats. Medical Science Monitor 22: 752–756.CrossRefGoogle Scholar
  14. 14.
    Murakami, U., K. Uchida, and T. Hiratsuka. 1976. Cardiac myosin from pig heart ventricle. Purification and enzymatic properties. Journal of Biochemistry 80 (3): 611–619.CrossRefGoogle Scholar
  15. 15.
    Ji, J.F., W.Z. Jiao, Y. Cheng, H. Yan, F. Su, and L.L. Chi. 2018. ShenFu preparation protects AML12 cells against palmitic acid-induced injury through inhibition of both JNK/Nox4 and JNK/NFkappaB pathways. Cellular Physiology and Biochemistry 45 (4): 1617–1630.CrossRefGoogle Scholar
  16. 16.
    Lv, S.C., M. Wu, M. Li, Q. Wang, X.J. Wang, A. Zhang, L. Xu, and J.P. Zhang. 2017. Effect of QiShenYiQi pill on myocardial collagen metabolism in experimental autoimmune myocarditis rats. Biomedicine & Pharmacotherapy 88: 894–901.CrossRefGoogle Scholar
  17. 17.
    Okuda, K., H.Y. Fu, T. Matsuzaki, R. Araki, S. Tsuchida, P.V. Thanikachalam, T. Fukuta, T. Asai, M. Yamato, S. Sanada, H. Asanuma, Y. Asano, M. Asakura, H. Hanawa, H. Hao, N. Oku, S. Takashima, M. Kitakaze, Y. Sakata, and T. Minamino. 2016. Targeted therapy for acute autoimmune myocarditis with nano-sized liposomal FK506 in rats. PLoS One 11 (8): e0160944.CrossRefGoogle Scholar
  18. 18.
    Tajiri, K., N. Shimojo, S. Sakai, T. Machino-Ohtsuka, K. Imanaka-Yoshida, M. Hiroe, Y. Tsujimura, T. Kimura, A. Sato, Y. Yasutomi, and K. Aonuma. 2013. Pitavastatin regulates helper T-cell differentiation and ameliorates autoimmune myocarditis in mice. Cardiovascular Drugs and Therapy 27 (5): 413–424.CrossRefGoogle Scholar
  19. 19.
    Holgate, R.L., and M. Steyn. 2016. Diffuse idiopathic skeletal hyperostosis: diagnostic, clinical, and paleopathological considerations. Clinical Anatomy 29 (7): 870–877.CrossRefGoogle Scholar
  20. 20.
    Jia, Y., J. Jing, Y. Bai, Z. Li, L. Liu, J. Luo, M. Liu, and H. Chen. 2011. Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-kappaB signaling pathways. PLoS One 6 (10): e27006.CrossRefGoogle Scholar
  21. 21.
    Zheng, Z., L. Yu, Y. Wu, and H. Wu. 2018. FGL2 knockdown improves heart function through regulation of TLR9 signaling in the experimental autoimmune myocarditis rats. Immunologic Research 66 (1): 52–58.CrossRefGoogle Scholar
  22. 22.
    Watanabe, R., R.W. Azuma, J. Suzuki, M. Ogawa, A. Itai, Y. Hirata, I. Komuro, and M. Isobe. 2013. Inhibition of NF-kappaB activation by a novel IKK inhibitor reduces the severity of experimental autoimmune myocarditis via suppression of T-cell activation. American Journal of Physiology. Heart and Circulatory Physiology 305 (12): H1761–H1771.CrossRefGoogle Scholar
  23. 23.
    Remoli, M.E., J. Ragimbeau, E. Giacomini, V. Gafa, M. Severa, R. Lande, S. Pellegrini, and E.M. Coccia. 2007. NF-{kappa}B is required for STAT-4 expression during dendritic cell maturation. Journal of Leukocyte Biology 81 (1): 355–363.CrossRefGoogle Scholar
  24. 24.
    Pierer, M., J. Rethage, R. Seibl, R. Lauener, F. Brentano, U. Wagner, H. Hantzschel, B.A. Michel, R.E. Gay, S. Gay, and D. Kyburz. 2004. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. Journal of Immunology 172 (2): 1256–1265.CrossRefGoogle Scholar
  25. 25.
    Zhang, S., X. Liu, C. Sun, J. Yang, L. Wang, J. Liu, L. Gong, and Y. Jing. 2016. Apigenin attenuates experimental autoimmune myocarditis by modulating Th1/Th2 cytokine balance in mice. Inflammation 39 (2): 678–686.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu-Long Xue
    • 1
  • Sheng-Xiao Zhang
    • 2
  • Chao-Feng Zheng
    • 3
  • Yu-Feng Li
    • 4
  • Li-Hui Zhang
    • 1
  • Yu-Fei Hao
    • 2
  • Shu Wang
    • 5
  • Xue-Wen Li
    • 1
    Email author
  1. 1.Department of Cardiovascular MedicineShanxi Dayi Hospital Affiliated to Shanxi Medical UniversityTaiyuanPeople’s Republic of China
  2. 2.Department of RheumatologyThe Second Hospital of Shanxi Medical UniversityTaiyuanPeople’s Republic of China
  3. 3.Genetics LaboratoryLinfen Meternity & Child Healthcare HospitalLinfenPeople’s Republic of China
  4. 4.Department of Neurology and Stroke CenterThe First Affiliated Hospital of Jinan UniversityGuangzhouPeople’s Republic of China
  5. 5.Department of Rehabilitation MedicineThe First Affiliated Hospital of Xiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations