pp 1–11 | Cite as

Probenecid Relieves Cerebral Dysfunction of Sepsis by Inhibiting Pannexin 1-Dependent ATP Release

  • Zhanqin Zhang
  • Yi Lei
  • Chaoying Yan
  • Xiaopeng Mei
  • Tao Jiang
  • Zhi Ma
  • Qiang WangEmail author


Acute brain dysfunction and the following neurological manifestation are common complications in septic patients, which are associated with increased morbidity and mortality. However, the therapeutic strategy of this disorder remains a major challenge. Given the emerging role of a clinically approved drug, probenecid (PRB) has been recently identified as an inhibitor of pannexin 1 (PANX1) channel, which restrains extracellular ATP release-induced purinergic pathway activation and inflammatory response contributing to diverse pathological processes. In this study, we explored whether PRB administration attenuated neuroinflammatory response and cognitive impairment during sepsis. In mice suffered from cecal ligation and puncture (CLP)-induced sepsis, treatment with PRB improved memory retention and lessened behavioral deficits. This neuroprotective effect was coupled with restricted overproduction of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and interleukin (IL)-1β in the hippocampus. Since this damped neuroinflammation was replicated by inhibition of ATP release, it suggested that PANX1 channel modulates a purinergic-related pathway contributing to the neurohistological damage. Therefore, we identified PRB could be a promising therapeutic approach for the therapy of cerebral dysfunction of sepsis.


probenecid pannexin 1 cecal ligation and puncture neuroinflammation cognitive impairment 



The authors thank the National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine and Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research for providing the platform of some biochemistry experiments, and Dr. Hao Hu for providing guidance and standards of the behavioral experiments.

Funding Information

This work was supported by the Overseas, Hong Kong & Macao Scholars Collaborated Researching Fund (Grant No. 81529004) and the National Natural Science Foundation of China (Grant Nos. 81774113 and 81801958).

Compliance with Ethical Standards

All animal experiments were approved by the Institutional Animal Care and Use Committees of Xi’an Jiaotong University (Xi’an, China).

Competing Interests

The authors declare that they have no competing interests.


  1. 1.
    Bao, Y., C. Ledderose, T. Seier, A.F. Graf, B. Brix, E. Chong, and W.G. Junger. 2014. Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. The Journal of Biological Chemistry 289: 26794–26803.Google Scholar
  2. 2.
    Barichello, T., M.R. Martins, A. Reinke, G. Feier, C. Ritter, J. Quevedo, and F. Dal-Pizzol. 2005. Cognitive impairment in sepsis survivors from cecal ligation and perforation. Critical Care Medicine 33: 221–223 discussion 262-223.Google Scholar
  3. 3.
    Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews. Neuroscience 8: 57–69.Google Scholar
  4. 4.
    Burma, N.E., R.P. Bonin, H. Leduc-Pessah, C. Baimel, Z.F. Cairncross, M. Mousseau, J.V. Shankara, P.L. Stemkowski, D. Baimoukhametova, J.S. Bains, M.C. Antle, G.W. Zamponi, C.M. Cahill, S.L. Borgland, Y. de Koninck, and T. Trang. 2017. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nature Medicine 23: 355–360.Google Scholar
  5. 5.
    Carrillo-Mora, P., L.A. Mendez-Cuesta, V. Perez-De La Cruz, T.I. Fortoul-van Der Goes, and A. Santamaria. 2010. Protective effect of systemic L-kynurenine and probenecid administration on behavioural and morphological alterations induced by toxic soluble amyloid beta (25-35) in rat hippocampus. Behavioural Brain Research 210: 240–250.Google Scholar
  6. 6.
    Cunningham, R.F., Z.H. Israili, and P.G. Dayton. 1981. Clinical pharmacokinetics of probenecid. Clinical Pharmacokinetics 6: 135–151.Google Scholar
  7. 7.
    Decrock, E., M. De Bock, N. Wang, G. Bultynck, C. Giaume, C.C. Naus, C.R. Green, and L. Leybaert. 2015. Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cellular and Molecular Life Sciences 72: 2823–2851.Google Scholar
  8. 8.
    Dossi, E., T. Blauwblomme, J. Moulard, O. Chever, F. Vasile, E. Guinard, M. le Bert, I. Couillin, J. Pallud, L. Capelle, G. Huberfeld, and N. Rouach. 2018. Pannexin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy. Science Translational Medicine 10: eaar3796.Google Scholar
  9. 9.
    Freitas-Andrade, M., J.F. Bechberger, B.A. MacVicar, V. Viau, and C.C. Naus. 2017. Pannexin1 knockout and blockade reduces ischemic stroke injury in female, but not in male mice. Oncotarget 8: 36973–36983.Google Scholar
  10. 10.
    Gofton, T.E., and G.B. Young. 2012. Sepsis-associated encephalopathy. Nature Reviews. Neurology 8: 557–566.Google Scholar
  11. 11.
    Gyoneva, S., D. Davalos, D. Biswas, S.A. Swanger, E. Garnier-Amblard, F. Loth, K. Akassoglou, and S.F. Traynelis. 2014a. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62: 1345–1360.Google Scholar
  12. 12.
    Gyoneva, S., D. Davalos, D. Biswas, S.A. Swanger, E. Garnier-Amblard, F. Loth, K. Akassoglou, and S.F. Traynelis. 2014b. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62: 1345–1360.Google Scholar
  13. 13.
    Hainz, N., S. Wolf, A. Beck, S. Wagenpfeil, T. Tschernig, and C. Meier. 2017. Probenecid arrests the progression of pronounced clinical symptoms in a mouse model of multiple sclerosis. Scientific Reports 7: 17214.Google Scholar
  14. 14.
    Hainz, N., S. Wolf, T. Tschernig, and C. Meier. 2016. Probenecid application prevents clinical symptoms and inflammation in experimental autoimmune encephalomyelitis. Inflammation 39: 123–128.Google Scholar
  15. 15.
    Hanisch, U.K., and H. Kettenmann. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience 10: 1387–1394.Google Scholar
  16. 16.
    Hattori, Y., K. Hattori, T. Suzuki, and N. Matsuda. 2017. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: novel therapeutic implications and challenges. Pharmacology & Therapeutics 177: 56–66.Google Scholar
  17. 17.
    He, H., D. Liu, Y. Long, X. Wang, and B. Yao. 2018. The pannexin-1 channel inhibitor probenecid attenuates skeletal muscle cellular energy crisis and histopathological injury in a rabbit endotoxemia model. Inflammation 41: 2030–2040.Google Scholar
  18. 18.
    Hernandes, M.S., J.C. D'Avila, S.C. Trevelin, et al. 2014. The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. Journal of Neuroinflammation 11: 36.Google Scholar
  19. 19.
    Imamura, Y., H. Wang, N. Matsumoto, T. Muroya, J. Shimazaki, H. Ogura, and T. Shimazu. 2011. Interleukin-1beta causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187: 63–69.Google Scholar
  20. 20.
    Iwashyna, T.J., E.W. Ely, D.M. Smith, and K.M. Langa. 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304: 1787–1794.Google Scholar
  21. 21.
    Li, M.X., H.L. Zheng, Y. Luo, J.G. He, W. Wang, J. Han, L. Zhang, X. Wang, L. Ni, H.Y. Zhou, Z.L. Hu, P.F. Wu, Y. Jin, L.H. Long, H. Zhang, G. Hu, J.G. Chen, and F. Wang. 2018. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Molecular Psychiatry 23: 556–568.Google Scholar
  22. 22.
    Li, X., Y. Kondo, Y. Bao, L. Staudenmaier, A. Lee, J. Zhang, C. Ledderose, and W.G. Junger. 2017. Systemic adenosine triphosphate impairs neutrophil chemotaxis and host defense in sepsis. Critical Care Medicine 45: e97–e104.Google Scholar
  23. 23.
    Michels, M., A.S. Vieira, F. Vuolo, H.G. Zapelini, B. Mendonça, F. Mina, D. Dominguini, A. Steckert, P.F. Schuck, J. Quevedo, F. Petronilho, and F. Dal-Pizzol. 2015. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain, Behavior, and Immunity 43: 54–59.Google Scholar
  24. 24.
    Moraes, C.A., G. Santos, T.C. de Sampaio e Spohr, J.C. D'Avila, F.R. Lima, C.F. Benjamim, F.A. Bozza, and F.C. Gomes. 2015. Activated microglia-induced deficits in excitatory synapses through IL-1beta: implications for cognitive impairment in sepsis. Molecular Neurobiology 52: 653–663.Google Scholar
  25. 25.
    Neves, F.S., Marques, P.T., Barros-Aragao, F., et al. 2018. Brain-defective insulin signaling is associated to late cognitive impairment in post-septic mice. Molecular Neurobiology 55: 435–444.Google Scholar
  26. 26.
    Qi, Y., N. Hainz, T. Tschernig, C. Meier, and D.A. Volmer. 2015. Differential distribution of probenecid as detected by on-tissue mass spectrometry. Cell and Tissue Research 360: 427–429.Google Scholar
  27. 27.
    Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4: 31–36.Google Scholar
  28. 28.
    Robbins, N., S.E. Koch, M. Tranter, and J. Rubinstein. 2012. The history and future of probenecid. Cardiovascular Toxicology 12: 1–9.Google Scholar
  29. 29.
    Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.Google Scholar
  30. 30.
    Shieh, C.H., A. Heinrich, T. Serchov, D. van Calker, and K. Biber. 2014. P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-alpha in cultured mouse microglia. Glia 62: 592–607.Google Scholar
  31. 31.
    Silverman, W., S. Locovei, and G. Dahl. 2008. Probenecid, a gout remedy, inhibits pannexin 1 channels. American Journal of Physiology. Cell Physiology 295: C761–C767.Google Scholar
  32. 32.
    Silverman, W.R., J.P. de Rivero Vaccari, S. Locovei, F. Qiu, S.K. Carlsson, E. Scemes, R.W. Keane, and G. Dahl. 2009. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. The Journal of Biological Chemistry 284: 18143–18151.Google Scholar
  33. 33.
    Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.Google Scholar
  34. 34.
    Sprung, C.L., P.N. Peduzzi, C.H. Shatney, R.M. Schein, M.F. Wilson, J.N. Sheagren, and L.B. Hinshaw. 1990. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Critical Care Medicine 18: 801–806.Google Scholar
  35. 35.
    Tollner, K., C. Brandt, K. Romermann, and W. Loscher. 2015. The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide. European Journal of Pharmacology 746: 167–173.Google Scholar
  36. 36.
    Wei, R., J. Wang, Y. Xu, B. Yin, F. He, Y. Du, G. Peng, and B. Luo. 2015. Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience 301: 168–177.Google Scholar
  37. 37.
    Widmann, C.N., and M.T. Heneka. 2014. Long-term cerebral consequences of sepsis. Lancet Neurology 13: 630–636.Google Scholar
  38. 38.
    Yang, D., Y. He, R. Munoz-Planillo, Q. Liu, and G. Nunez. 2015. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43: 923–932.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhanqin Zhang
    • 1
  • Yi Lei
    • 2
  • Chaoying Yan
    • 1
  • Xiaopeng Mei
    • 1
  • Tao Jiang
    • 1
  • Zhi Ma
    • 1
  • Qiang Wang
    • 1
    Email author
  1. 1.Department of Anesthesiology, Center for Brain ScienceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  2. 2.Department of AnesthesiologyGeneral Hospital of Xinjiang Military RegionXinjiangChina

Personalised recommendations