Advertisement

Inflammation

pp 1–11 | Cite as

Anti-inflammatory Activity of Methanolic Extract and an Alkaloid from Palicourea crocea (Sw.) Roem and Schult

  • Anelise Samara Nazari FormagioEmail author
  • Pedro Cruz de Oliveira Junior
  • Carla Roberta Ferreira Volobuff
  • Candida Aparecida Leite Kassuya
  • Diego Cegobia Ferreira
  • Claudia Andrea Lima Cardoso
  • Maria Helena Sarragiotto
  • Zefa Valdevina Pereira
ORIGINAL ARTICLE
  • 24 Downloads

Abstract

Palicourea crocea (Sw.) Roem. and Schult., “douradinha,” are used by treat inflammation (edema). Croceaine A (PC-1) was isolated from P. crocea (MEPC) leaves and studied for its antioxidant and anti-inflammatory activity, as well as concentrations of constituents and acute toxicity. The phenols and polyphenolics compounds and HPLC/DAD were determined. The antioxidant activity were evaluated for DPPH, ABTS, and MDA. MEPC (300, 100, and 300 mg/kg) and PC-1 (10 and 30 mg/kg) were tested for anti-inflammatory effects in paw edema, pleurisy, cold sensitivity, and mechanical hyperalgesia. Acute toxicity is also described. MEPC contained high concentrations of phenolic and flavonoid compounds (≤ 800.35 mg/g), as well as caffeic acid, ferulic acid, rutin, and quercetin, revealed by HPLC-DAD analysis. MEPC displayed antioxidant activity against ABTS radicals (IC50 = 68.5 μg/mL) and MDA (74%). MEPC and alkaloid PC-1 demonstrated an anti-edematogenic effect in Cg-induced paw edema in 2 and 4 h, and also significantly reduced mechanical hyperalgesia, cold response to acetone in mice, at 3 and 4 h after injection, as well as leukocyte migrationin the pleurisy model. No toxicity was detected by MEPC. For the first time, P. crocea was evaluated for its antioxidant, systemic anti-inflammatory, and anti-hyperalgesic activities.

KEY WORDS

antioxidant anti-hyperalgesic croceaine A douradina edema pleurisy 

Notes

Funding Information

We are grateful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil, 2764/2011) and UFGD (Universidade Federal da Grande Dourados) for financial support and fellowships.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This work was found to comply with the ethical concepts required by the National Council for Animal Experiments Control (CONCEA), with current legislation and other provisions of the ethics investigations that directly involve the use of animals and all protocols and procedures were approved according to the Ethics Committee on Animal Use the Federal University of Grande Dourados, Mato Grosso do Sul, Brazil (CEUA/UFGD) with authorization number 17/2017.

References

  1. 1.
    Ribeiro, R.V., I.G.C. Bieski, S.O. Balogun, and D.T.O. Martins. 2017. Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of Ethnopharmacology 9: 69–102.  https://doi.org/10.1016/j.jep.2017.04.023. CrossRefGoogle Scholar
  2. 2.
    Andrade, S.O., and Jr Matos. 1968. Contribuição do estudo de plantas tóxicas no Estado de São Paulo. Instituto Biológico: 63–66.Google Scholar
  3. 3.
    Peixoto, P.V., J. Döbereiner, C.H. Tokarnia, and C.S. Peixoto. 1987. Intoxicação experimental por Palicourea marcgravii (Rubiaceae) em coelhos. Pesquisa Veterinária Brasileira 7: 117–129.Google Scholar
  4. 4.
    Pereira, Z.V., R.M.S.A. Meira, and A.A. Azevedo. 2003. Morfoanatomia foliar de Palicourea longepedunculata Gardiner (Rubiaceae). Revista Árvore 27: 759–767.  https://doi.org/10.1590/S0100-67622003000600002.CrossRefGoogle Scholar
  5. 5.
    Tokarnia, C.H., J. Dobereiner, and M.F. Silva. 1979. Plantas Tóxicas da Amazônia a Bovinos e outros Herbívoros. Manaus: INPA 95p.Google Scholar
  6. 6.
    Afonso, E., Pott, A. 2001. Plantas no Pantanal Tóxicas para Bovinos. Embrapa Informação Tecnológica 51p. http://old.cnpgc.embrapa.br/publicacoes/livros/plantastoxicas/05suspeitas.html. Access 21 Aug 2018.
  7. 7.
    Gorniak, S.L., N.J. Palermo, G.H. Oliveira, and H.S. Spinosa. 1992. Palicourea marcgravii intoxication in rats: effects of different fractions. Veterinary and Human Toxicology 34 (3): 216–218.Google Scholar
  8. 8.
    Tokarnia, C.H., Döbereiner, J. Peixoto, P.V. 2000. Plantas tóxicas do Brasil. Embrapa. Rio de Janeiro ed. Helianthus. 310p.Google Scholar
  9. 9.
    Kemmerling, W. 1996. Toxicity of Palicourea marcgravii: combined effects of fluoroacetate, N-methyltyramine and 2-methyltetrahydro-beta-carboline. Zeitschrift für Naturforschung C A Journal of Biosciences 51: 59–64.  https://doi.org/10.1515/znc-1996-1-211. CrossRefGoogle Scholar
  10. 10.
    Oliveira, M.M. 1963. Chromatographic isolation of monofluoroacetic acid from Palicourea marcgravii St. Hil. Experientia 19: 586–587.CrossRefGoogle Scholar
  11. 11.
    Moraes-Moreau, R.L., M. Haraguchi, H. Morita, and N.J. Palermo. 1995. Chemical and biological demonstration of the presence of mono-fluoroacetate in the leaves of Palicourea marcgravii St. Hil. Brazilian Journal of Medical and Biological Research 28: 685–692.Google Scholar
  12. 12.
    Lee, S.T., D. Cook, F. Riet-Correa, J.A. Pfister, W.R. Anderson, F.G. Lima, and D.R. Gardner. 2012. Detection of monofluoracetate in Palicourea and Amorimia species. Toxicon 60: 791–796.  https://doi.org/10.1016/j.toxicon.2012.05.029.CrossRefGoogle Scholar
  13. 13.
    Düsman, L.T., T.C.M. Jorge, M.C. de Souza, M.N. Eberlin, E.C. Meurer, C.C. Bocca, E.A. Basso, and M.H. Sarragiotto. 2004. Monoterpene Indole alkaloids from Palicourea crocea. Journal of Natural Products 67: 1886–1888.  https://doi.org/10.1021/np0340807.CrossRefGoogle Scholar
  14. 14.
    Narine, L.L., and A.R. Maxwell. 2009. Monoterpenoid indole alkaloids from Palicourea crocea. Phytochemistry Letters 2: 34–36.  https://doi.org/10.1021/np0340807. CrossRefGoogle Scholar
  15. 15.
    Berger, A., M.K. Kostyan, S.I. Klose, M. Gastegger, E. Lorbeer, L. Brecker, and J. Schinnerl. 2015. Loganin and secologanin derived tryptamine–iridoid alkaloids from Palicourea crocea and Palicourea padifolia (Rubiaceae). Phytochemistry 116: 162–169.  https://doi.org/10.1016/j.phytochem.2015.05.013.CrossRefGoogle Scholar
  16. 16.
    Formagio, A.S.N., T.E. Masetto, M.C. Vieira, N.A.H. Zárate, A.I.N. Matos, and C.R.F. Volobuff. 2014. Allelopathic and antioxidant potential of plants extracts. Journal of Biosciences 30: 629–638.Google Scholar
  17. 17.
    Zanella, C.S., W.L. Gavassoni, L.M.A. Bacchi, and A.S.N. Formagio. 2015. Atividade de óleos e extratos vegetais sobre germinação carpogênica e crescimento micelial de Sclerotinia sclerotiorum. Arquivos do Instituto Biológico 82: 1–8.  https://doi.org/10.1590/1808-1657000372013.CrossRefGoogle Scholar
  18. 18.
    Stocks, J., J.M. Gutteridge, R.J. Sharp, and T.L. Dormandy. 1974. Assay using brain homogenate for measuring the antioxidant activity of biological fluids. Clinical Science and Molecular Medicine 47: 215–222.  https://doi.org/10.1042/cs0470215. Google Scholar
  19. 19.
    Winter, C.A., E.A. Risley, and G.W. Nuss. 1962. Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine 111: 544–547.  https://doi.org/10.3181/00379727-111-27849. CrossRefGoogle Scholar
  20. 20.
    Chaplan, S.R., F.W. Bach, J.W. Pogrel, J.M. Chung, and T.L. Yaksh. 1994. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods 53: 55–63.  https://doi.org/10.1016/0165-0270(94)90144-9.CrossRefGoogle Scholar
  21. 21.
    Decosterd, I., and C.J. Woolf. 2000. Spared nerve injury: an animal model of persistent peripheral neurophatic pain. Pain 87: 149–158.  https://doi.org/10.1016/S0304-3959(00)00276-1. CrossRefGoogle Scholar
  22. 22.
    Vinegar, R., J.F. Traux, and J.L. Selph. 1973. Some quantitative temporal characteristic of carrageenin-induced pleurisy in the rat. Proceedings of the Society for Experimental Biology and Medicine 143: 711–714.  https://doi.org/10.3181/00379727-143-37397. CrossRefGoogle Scholar
  23. 23.
    Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.  https://doi.org/10.1016/0003-2697(76)90527-3.CrossRefGoogle Scholar
  24. 24.
    Valverde, J., G. Tamayo, and M. Hesse. 1999. β-Carboline monoterpenoid glucosides from Palicourea adusta. Phytochemistry 52: 1485–1489.  https://doi.org/10.1016/S0031-9422(99)00215-0.CrossRefGoogle Scholar
  25. 25.
    Do Nascimento, C.A., M.S. Gomesa, L.M. Lião, C.M.A. de Oliveira, L. Kato, C.C. da Silva, and C.M.A. Tanaka. 2006. Alkaloides from Palicourea coriacea (Cham.) K. Schum. Zeitschrift für Naturforschung. B, A Journal of Chemical Sciences 61: 1443–1446.  https://doi.org/10.1002/chin.200713196.CrossRefGoogle Scholar
  26. 26.
    Do Nascimento, C.A., L.M. Lião, L. Kato, C.C. da Silva, C.M.A. Tanaka, I.T.A. Schuquel, and C.M.A. de Oliveira. 2008. A tetrahydro-b-carboline trisaccharide from Palicourea coriacea (Cham.) K. Schum. Carbohydrate Research 343: 1104–1107.  https://doi.org/10.1016/j.carres.2008.01.032.CrossRefGoogle Scholar
  27. 27.
    Kerber, V.A., C.S. Passos, L.C.K. Junior, J.C. Quirion, X. Pannecoucke, I.S. Maire, and A.T. Henriques. 2014. Three new monoterpene indole alkaloids from Psychotria umbellata Thonn. Tetrahedron Letters 55: 4798–4800.  https://doi.org/10.1016/j.tetlet.2014.06.090.CrossRefGoogle Scholar
  28. 28.
    Berger, A., H. Fasshuber, J. Schinnerl, L. Brecker, and H. Greger. 2012. Various types of tryptamine-iridoid alkaloids from Palicourea acuminata (=Psychotria acuminata, Rubiaceae). Phytochemistry Letters 5: 558–562.  https://doi.org/10.1016/j.phytol.2012.05.013.CrossRefGoogle Scholar
  29. 29.
    Bruneton, J. 1991. Elementos de Fitoquímica y de Farmacognosia. AS/Espanha: Ed. Acribia. 594p.Google Scholar
  30. 30.
    Seyoum, A., K. Asres, and F.K. El-Fiky. 2006. Structure–radical scavenging activity relationships of flavonoids. Phytochemistry 67: 2058–2070.  https://doi.org/10.1016/j.phytochem.2006.07.002.CrossRefGoogle Scholar
  31. 31.
    Gullón, B., T.A.L. Chau, M.T. Moreira, J.M. Lema, and G. Eibes. 2017. Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science & Technology 67: 220–235.  https://doi.org/10.1016/j.tifs.2017.07.008.CrossRefGoogle Scholar
  32. 32.
    Sharma, S., A. Ali, J. Ali, J.K. Sahni, and S. Baboota. 2013. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opinion on Investigational Drugs 22: 1063–1079.  https://doi.org/10.1517/13543784.2013.805744.CrossRefGoogle Scholar
  33. 33.
    Manach, C., C. Morand, C. Demigné, O. Texier, F. Régérat, and C. Rémésy. 1997. Bioavailability of rutin and quercetin in rats. FEBS Letters 409: 12–16.  https://doi.org/10.1016/S0014-5793(97)00467-5.CrossRefGoogle Scholar
  34. 34.
    Srinivasan, M., A.R. Sudheer, and V.P. Menon. 2007. Ferulic acid: therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition 40: 92–100.  https://doi.org/10.3164/jcbn.40.92. CrossRefGoogle Scholar
  35. 35.
    Touaibia, M., J. Jean-François, and J. Doiron. 2011. Caffeic acid, a versatile pharmacophore: an overview. Mini-Reviews in Medicinal Chemistry 11 (8): 695–713.  https://doi.org/10.2174/138955711796268750.CrossRefGoogle Scholar
  36. 36.
    Ilhami, G. 2006. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217: 213–220.  https://doi.org/10.1016/j.tox.2005.09.011.CrossRefGoogle Scholar
  37. 37.
    Hensley, K., K.A. Robinson, S.P. Gabbita, S. Salsman, and R.A. Floyd. 2000. Reactive oxygen species, cell signaling and cell injury. Free Radical Biology & Medicine 28: 1456–1462.  https://doi.org/10.1016/S0891-5849(00)00252-5.CrossRefGoogle Scholar
  38. 38.
    Zhang, J.M., and J. An. 2007. Cytokines, inflammation and pain. International Anesthesiology Clinics 45: 27–37.  https://doi.org/10.1097/AIA.0b013e318034194e.CrossRefGoogle Scholar
  39. 39.
    De Oliveira, C.M., F.R. Nonato, F.O. de Lima, R.D. Couto, J.P. David, J.M. David, M.B. Soares, and C.F. Villarreal. 2011. Antinociceptive properties of bergenin. Journal of Natural Products 74: 2062–2068.  https://doi.org/10.1021/np200232s.CrossRefGoogle Scholar
  40. 40.
    Di Rosa, M., J.P. Giroud, and D.A. Willoughby. 1971. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. The Journal of Pathology 104: 15–44.  https://doi.org/10.1002/path.1711040103.CrossRefGoogle Scholar
  41. 41.
    Both, F.L., V.A. Kerber, A.T. Henriques, and E. Elisabetsky. 2002. Analgesic properties of umbellatine from Psychotria umbellata. Pharmaceutical Biology 40: 336–341.  https://doi.org/10.1076/phbi.40.5.336.8453.CrossRefGoogle Scholar
  42. 42.
    Both, F.L., L. Meneghini, V.A. Kerber, A.T. Henriques, and E. Elisabetsky. 2005. Psychopharmacological profile of the alkaloid psychollatine as a 5HT2A/C serotonina modulator. Journal of Natural Products 68: 374–380.  https://doi.org/10.1021/np049695y.CrossRefGoogle Scholar
  43. 43.
    Both, F.L., L. Meneghini, V.A. Kerber, A.T. Henriques, and E. Elisabetsky. 2006. Role of glutamate and dopamine receptors in the psychopharmacological profile of the índole alkaloid psychollatine. Journal of Natural Products 69: 342–345.  https://doi.org/10.1021/np050291v.CrossRefGoogle Scholar
  44. 44.
    Passos, C.S., C.A. Simões-Pires, A. Nurisso, T.C. Soldi, L. Kato, C.M. de Oliveira, E.O. de Faria, L. Marcourt, C. Gottfried, P.A. Carrupt, and A.T. Henriques. 2013. Indole alkaloids of Psychotria as multifunctional cholinesterase and monoamine oxidases inhibitors. Phytochemistry 86: 8–20.  https://doi.org/10.1016/j.phytochem.2012.11.015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anelise Samara Nazari Formagio
    • 1
    • 2
    Email author
  • Pedro Cruz de Oliveira Junior
    • 1
  • Carla Roberta Ferreira Volobuff
    • 2
  • Candida Aparecida Leite Kassuya
    • 2
  • Diego Cegobia Ferreira
    • 3
  • Claudia Andrea Lima Cardoso
    • 3
  • Maria Helena Sarragiotto
    • 4
  • Zefa Valdevina Pereira
    • 1
  1. 1.Faculty of Biological and Environmental SciencesFederal University of Grande Dourados UFGDDouradosBrazil
  2. 2.Faculty of Health SciencesFederal University of Grande Dourados UFGDDouradosBrazil
  3. 3.ChemistryState University of Mato Grosso do Sul UEMSDouradosBrazil
  4. 4.ChemistryState University of Maringá UEMMaringáBrazil

Personalised recommendations