Advertisement

Short-Term Effects of Sepsis and the Impact of Aging on the Transcriptional Profile of Different Brain Regions

  • Mike Yoshio Hamasaki
  • Patricia Severino
  • Renato David Puga
  • Marcia Kiyomi Koike
  • Camila Hernandes
  • Hermes Vieira Barbeiro
  • Denise Frediani Barbeiro
  • Marcel Cerqueira César Machado
  • Eduardo Moraes Reis
  • Fabiano Pinheiro da SilvaEmail author
ORIGINAL ARTICLE
  • 26 Downloads

Abstract

Among the clinical manifestations observed in septic patients, sepsis-associated encephalopathy (SAE) is probably the most obscure and poorly explored. It is well established, however, that SAE is more prevalent in aged individuals and related to a worse outcome. In this context, we decided to investigate the acute effects of sepsis, induced by cecal ligation and puncture (CLP), on the cerebral transcriptional profile of young and old rats. The idea was to highlight important signaling pathways possibly implicated in the early stages of SAE. Global gene expression analysis of three different brain regions (hippocampus, cerebellum, and cortex) indicated a relatively small interference of sepsis at the transcriptional level. Cerebellum tissue was the least affected by sepsis in aged rats. The increased expression of S100a8, Upp1, and Mt2a in all three brain regions of young septic rats indicate that these genes may be involved in the first line of response to sepsis in the younger brain. On the other hand, altered expression of a network of genes involved in sensory perception of smell in the cortex of aged rats, but not in young ones, indicates an earlier disruption of cortex function, possibly more sensitive to the systemic inflammation. The expression of S100a8 at the protein level was confirmed in all brain regions, with clear-up regulation in septic aged cortex. Taken together, our results indicate that the transcriptional response of the central nervous system to early sepsis varies between distinct brain regions and that the cortex is affected earlier in aged animals, in line with early neurological manifestations observed in older patients.

KEY WORDS

Encephalopathy Inflammation sepsis aging transcriptomics 

Notes

Funding information

This work was supported by FAPESP, the Sao Paulo Research Foundation (grant # 2014/20282-3).

Compliance With Ethical Standards

Conflict of Interest

The authors have no financial or ethical conflicts of interest.

Supplementary material

10753_2019_964_MOESM1_ESM.docx (146 kb)
ESM 1 (DOCX 145 kb)

References

  1. 1.
    Mayr, F.B., S. Yende, and D.C. Angus. 2014. Epidemiology of severe sepsis. Virulence 5 (1): 4–11.  https://doi.org/10.4161/viru.27372.CrossRefGoogle Scholar
  2. 2.
    Pinheiro da Silva, F., and M.C.C. Machado. 2017. Septic shock and the aging process: a molecular comparison. Frontiers in Immunology 8: 1389.  https://doi.org/10.3389/fimmu.2017.01389.CrossRefGoogle Scholar
  3. 3.
    Pisani, M.A. 2009. Considerations in caring for the critically ill older patient. Journal of Intensive Care Medicine 24 (2): 83–95.  https://doi.org/10.1177/0885066608329942. CrossRefGoogle Scholar
  4. 4.
    Umberger, R., B. Callen, and M.L. Brown. 2015. Severe sepsis in older adults. Critical Care Nursing Quarterly 38 (3): 259–270.  https://doi.org/10.1097/CNQ.0000000000000078.CrossRefGoogle Scholar
  5. 5.
    Heming, N., A. Mazeraud, F. Verdonk, F.A. Bozza, F. Chretien, and T. Sharshar. 2017. Neuroanatomy of sepsis-associated encephalopathy. Critical Care 21 (1): 65.  https://doi.org/10.1186/s13054-017-1643-z. CrossRefGoogle Scholar
  6. 6.
    Feng, Q., Y.H. Ai, H. Gong, L. Wu, M.L. Ai, S.Y. Deng, L. Huang, Q.Y. Peng, and L.N. Zhang. 2017. Characterization of sepsis and sepsis-associated encephalopathy. Journal of Intensive Care Medicine.  https://doi.org/10.1177/0885066617719750.
  7. 7.
    Gotz, T., A. Gunther, O.W. Witte, F.M. Brunkhorst, G. Seidel, and F. Hamzei. 2014. Long-term sequelae of severe sepsis: cognitive impairment and structural brain alterations - an MRI study (LossCog MRI). BMC Neurology 14: 145.  https://doi.org/10.1186/1471-2377-14-145.CrossRefGoogle Scholar
  8. 8.
    Widmann, C.N., and M.T. Heneka. 2014. Long-term cerebral consequences of sepsis. Lancet Neurology 13 (6): 630–636.  https://doi.org/10.1016/S1474-4422(14)70017-1.CrossRefGoogle Scholar
  9. 9.
    Hamasaki, M.Y., M.C.C. Machado, and F. Pinheiro da Silva. 2017. Animal models of neuroinflammation secondary to acute insults originated outside the brain. Journal of Neuroscience Research 96: 371–378.  https://doi.org/10.1002/jnr.24184.CrossRefGoogle Scholar
  10. 10.
    Mazeraud, A., Q. Pascal, F. Verdonk, N. Heming, F. Chretien, and T. Sharshar. 2016. Neuroanatomy and physiology of brain dysfunction in sepsis. Clinics in Chest Medicine 37 (2): 333–345.  https://doi.org/10.1016/j.ccm.2016.01.013.CrossRefGoogle Scholar
  11. 11.
    Volpe, B.T., R.A. Berlin, and M. Frankfurt. 2015. The brain at risk: the sepsis syndrome and lessons from preclinical experiments. Immunologic Research 63 (1–3): 70–74.  https://doi.org/10.1007/s12026-015-8704-7.CrossRefGoogle Scholar
  12. 12.
    Singer, B.H., M.W. Newstead, X. Zeng, C.L. Cooke, R.C. Thompson, K. Singer, R. Ghantasala, J.M. Parent, G.G. Murphy, T.J. Iwashyna, and T.J. Standiford. 2016. Cecal ligation and puncture results in long-term central nervous system myeloid inflammation. PLoS One 11 (2): e0149136.  https://doi.org/10.1371/journal.pone.0149136. CrossRefGoogle Scholar
  13. 13.
    Sun, W., L. Pei, and Z. Liang. 2017. mRNA and long non-coding RNA expression profiles in rats reveal inflammatory features in sepsis-associated encephalopathy. Neurochemical Research 42 (11): 3199–3219.  https://doi.org/10.1007/s11064-017-2357-y.CrossRefGoogle Scholar
  14. 14.
    Chaudhry, N., and A.K. Duggal. 2014. Sepsis associated encephalopathy. Advances in Medicine 2014: 762320.  https://doi.org/10.1155/2014/762320.CrossRefGoogle Scholar
  15. 15.
    Cunha, D.M., M.K. Koike, D.F. Barbeiro, H.V. Barbeiro, M.Y. Hamasaki, G.T. Coelho Neto, M.C. Machado, and F.P. da Silva. 2014. Increased intestinal production of alpha-defensins in aged rats with acute pancreatic injury. Experimental Gerontology 60: 215–219.  https://doi.org/10.1016/j.exger.2014.11.008.CrossRefGoogle Scholar
  16. 16.
    Pinheiro da Silva, F., F.G. Zampieri, D.F. Barbeiro, H.V. Barbeiro, A.C. Goulart, F. Torggler Filho, I.T. Velasco, L.M. da Cruz Neto, H.P. de Souza, and M.C. Machado. 2013. Septic shock in older people: a prospective cohort study. Immunity & Ageing 10 (1): 21.  https://doi.org/10.1186/1742-4933-10-21.CrossRefGoogle Scholar
  17. 17.
    Vieira da Silva Pellegrina, D., P. Severino, H. Vieira Barbeiro, F. Maziero Andreghetto, I. Tadeu Velasco, H. Possolo de Souza, M.C. Machado, E.M. Reis, and F. Pinheiro da Silva. 2015. Septic shock in advanced age: transcriptome analysis reveals altered molecular signatures in neutrophil granulocytes. PLoS One 10 (6): e0128341.  https://doi.org/10.1371/journal.pone.0128341. CrossRefGoogle Scholar
  18. 18.
    Wichterman, K.A., A.E. Baue, and I.H. Chaudry. 1980. Sepsis and septic shock–a review of laboratory models and a proposal. The Journal of Surgical Research 29 (2): 189–201.CrossRefGoogle Scholar
  19. 19.
    Wang, S., R. Song, Z. Wang, Z. Jing, S. Wang, and J. Ma. 2018. S100A8/A9 in inflammation. Frontiers in Immunology 9: 1298.  https://doi.org/10.3389/fimmu.2018.01298.CrossRefGoogle Scholar
  20. 20.
    Danielski, L.G., A.D. Giustina, M. Badawy, T. Barichello, J. Quevedo, F. Dal-Pizzol, and F. Petronilho. 2017. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. Molecular Neurobiology 55: 1045–1053.  https://doi.org/10.1007/s12035-016-0356-7.CrossRefGoogle Scholar
  21. 21.
    Pytel, P., and J.J. Alexander. 2009. Pathogenesis of septic encephalopathy. Current Opinion in Neurology 22 (3): 283–287.  https://doi.org/10.1097/WCO.0b013e32832b3101.CrossRefGoogle Scholar
  22. 22.
    Tsuruta, R., and Y. Oda. 2016. A clinical perspective of sepsis-associated delirium. Journal of Intensive Care 4: 18.  https://doi.org/10.1186/s40560-016-0145-4.CrossRefGoogle Scholar
  23. 23.
    Pizzorno, G., D. Cao, J.J. Leffert, R.L. Russell, D. Zhang, and R.E. Handschumacher. 2002. Homeostatic control of uridine and the role of uridine phosphorylase: a biological and clinical update. Biochimica et Biophysica Acta 1587 (2–3): 133–144.CrossRefGoogle Scholar
  24. 24.
    Choi, J.W., C.Y. Shin, M.S. Choi, S.Y. Yoon, J.H. Ryu, J.C. Lee, W.K. Kim, M.H. El Kouni, and K.H. Ko. 2008. Uridine protects cortical neurons from glucose deprivation-induced death: possible role of uridine phosphorylase. Journal of Neurotrauma 25 (6): 695–707.  https://doi.org/10.1089/neu.2007.0409.CrossRefGoogle Scholar
  25. 25.
    Sonneville, R., F. Verdonk, C. Rauturier, I.F. Klein, M. Wolff, D. Annane, F. Chretien, and T. Sharshar. 2013. Understanding brain dysfunction in sepsis. Annals of Intensive Care 3 (1): 15.  https://doi.org/10.1186/2110-5820-3-15.CrossRefGoogle Scholar
  26. 26.
    Leung, Y.K., M. Pankhurst, S.A. Dunlop, S. Ray, J. Dittmann, E.D. Eaton, P. Palumaa, et al. 2010. Metallothionein induces a regenerative reactive astrocyte phenotype via JAK/STAT and RhoA signalling pathways. Experimental Neurology 221 (1): 98–106.  https://doi.org/10.1016/j.expneurol.2009.10.006. CrossRefGoogle Scholar
  27. 27.
    Donato, R., B. R. Cannon, G. Sorci, F. Riuzzi, K. Hsu, D. J. Weber, and C. L. Geczy. 2013. Functions of S100 proteins. Current Molecular Medicine 13 (1): 24–57.CrossRefGoogle Scholar
  28. 28.
    Ometto, F., L. Friso, D. Astorri, C. Botsios, B. Raffeiner, L. Punzi, and A. Doria. 2017. Calprotectin in rheumatic diseases. Experimental Biology and Medicine (Maywood, N.J.) 242 (8): 859–873.  https://doi.org/10.1177/1535370216681551.CrossRefGoogle Scholar
  29. 29.
    Sroussi, H.Y., Y. Lu, D. Villines, and Y. Sun. 2012. The down regulation of neutrophil oxidative metabolism by S100A8 and S100A9: implication of the protease-activated receptor-2. Molecular Immunology 50 (1–2): 42–48.  https://doi.org/10.1016/j.molimm.2011.12.001.CrossRefGoogle Scholar
  30. 30.
    Denstaedt, S.J., J.L. Spencer-Segal, M.W. Newstead, K. Laborc, A.P. Zhao, A. Hjelmaas, X. Zeng, H. Akil, T.J. Standiford, and B.H. Singer. 2018. S100A8/A9 drives neuroinflammatory priming and protects against anxiety-like behavior after sepsis. Journal of Immunology 200 (9): 3188–3200.  https://doi.org/10.4049/jimmunol.1700834.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mike Yoshio Hamasaki
    • 1
  • Patricia Severino
    • 2
  • Renato David Puga
    • 2
  • Marcia Kiyomi Koike
    • 1
  • Camila Hernandes
    • 2
  • Hermes Vieira Barbeiro
    • 1
  • Denise Frediani Barbeiro
    • 1
  • Marcel Cerqueira César Machado
    • 1
  • Eduardo Moraes Reis
    • 3
  • Fabiano Pinheiro da Silva
    • 1
    • 4
    Email author
  1. 1.Departamento de Emergências ClínicasFaculdade de Medicina da Universidade de São PauloSão PauloBrazil
  2. 2.Hospital Israelita Albert EinsteinInstituto Israelita de Ensino e PesquisaSão PauloBrazil
  3. 3.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  4. 4.Laboratório de Emergências Clínicas (LIM-51)Faculdade de Medicina da Universidade de São PauloSão PauloBrazil

Personalised recommendations