Advertisement

Inflammation

pp 1–11 | Cite as

The Influence of a Xanthine-Catechin Chemical Matrix on in vitro Macrophage-Activation Triggered by Antipsychotic Ziprasidone

  • Thiago Duarte
  • Fernanda BarbisanEmail author
  • Beatriz Sadigurski Nunes da Cunha
  • Verônica Farina Azzolin
  • Bárbara Osmarin Turra
  • Marta Maria Medeiros Frescura Duarte
  • Ivo Emilio da Cruz Jung
  • Euler Esteves Ribeiro
  • Pedro Antônio do Prado-Lima
  • Ivana Beatrice Mânica da Cruz
ORIGINAL ARTICLE
  • 46 Downloads

Abstract

Ziprasidone (ZIP) is an effective antipsychotic with low side effects than other second-generation antipsychotics. Despite this, there are reports of adverse events and previous studies associating the use of ZIP the inflammatory response. It is possible to infer that bioactive molecules present in some foods could attenuate peripheral inflammatory and oxidative stress potentially triggered ZIP. This is the case of guaraná xanthine-catechin chemical matrix (XC-Mix) that presents caffeine, theobromine, and catechin. The in vitro protocols using murine RAW 264.7 cell macrophages were ZIP-exposure in culture medium supplemented with chemical isolated and admixture of Caf, The, and Cat. Main results showed that supplementation with isolated and XC-mix had a lowering effect on 72 h macrophages proliferation. XC-mix with 1:1:1 proportion at 25 μg/mL of each caffeine, theobromine, and catechin, molecules present lowering effect on nitric oxide levels, oxidative stress markers (DNA oxidation quantified by 8-hydroxy-2′ –deoxyguanosine), lipoperoxidation, and protein carbonylation. XC-mix also decreased protein levels and downregulated genes of proinflammatory cytokines (IL-1β, IL-6, TNF-α). At contrary, XC-Mix increased levels and upregulated gene of anti-inflammatory IL-10 cytokine. The results suggest that XC-matrix could present some beneficial action on peripheral proinflammatory effects ZIP-triggered. Complementary in vivo studies could be useful to confirm these in vitro findings described here.

KEY WORDS

Caffeine Theobromine Catechin, Paullinia cupana Schizophrenia Cytokine 

Notes

Acknowledgments

PROEX/CAPES number 23038.005848/2018-31 for reading spectrophotometer (SpectraMax® i3x Multi-Mode Microplate Reader).

Availability of Data and Materials

All data generated or analyzed during the current study are included in this article.

Authors’ Contributions

TD and FB designed the research and analyzed and interpreted the data; TD, FB, BSNC, VFA, BOT, and IBMC interpreted the data and wrote the paper; TD, FB, MMMFD, IECJ, and IBM analyzed and interpreted the data; EER and PASPL performed the research and analyzed the data; TD, FB, BSNC, VFA, BOT, and IBMC directed, designed, analyzed, and interpreted the data. All the authors read and approved the final manuscript.

Funding

This work was supported by the CNPq [Nos. 402325/2013-3; 490760/2013-9; 311446/2012-4] and CAPES for grants and fellowships. “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” and “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)” for Brazilian financial support.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

It is an in vitro work with the use of cell lines, there is no need for approval by the Ethics Committee.

References

  1. 1.
    Khoury, R., and H.A. Nasrallah. 2017. Inflammatory biomarkers in individuals at clinical high risk forpsychosis (CHR-P): State or trait? Schizophrenia Research 199: 31–38.CrossRefGoogle Scholar
  2. 2.
    Chen, J., F.H. Xu, R. Shao, C. Chen, and C. Deng. 2017. Molecular mechanisms of antipsychotic drug-induced diabetes. Frontiers in Neuroscience 11: 643.CrossRefGoogle Scholar
  3. 3.
    Rajiv, R., K. Muzaffer, and S. Guloksuz. 2017. The link between the immune system, environment, and psychosis. Schizophrenia Bulletin 43: 693–697.CrossRefGoogle Scholar
  4. 4.
    Ku, H.L., T.P. Su, and Y.H. Chou. 2006. Ziprasidone-associated pedal edema in the treatment of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 30: 963–964.CrossRefGoogle Scholar
  5. 5.
    Phillips, E.J., W.H. Chung, M. Mockenhaupt, J.C. Roujeau, and S.A. Mallal. 2011. Drug hipersensivity: Pharmacogenetics and clinical syndromes. Journal of Allergy and Clinical Immunology 127 (3 Suppl): 60–66.CrossRefGoogle Scholar
  6. 6.
    Gresham, C., and A.M. Ruha. 2010. Respiratory failure following isolated ziprasidone ingestion in a toddler. Journal of Medical Toxicology 6: 41–43.CrossRefGoogle Scholar
  7. 7.
    Hamera, L., and B.F. Khishfe. 2017. Kounis syndrome and ziprasidone. American Journal of Emergency Medicine 35: 493–494.CrossRefGoogle Scholar
  8. 8.
    Duarte, T., F. Barbisan, P.A.S. do Prado-Lima, V.F. Azzolin, I.E. da Cruz Jung, M.M.M.F. Duarte, C.F. Teixeira, M.H. Mastella, and I.B.M. da Cruz. 2018. Ziprasidone, a second-generation antipsychotic drug, triggers a macrophage inflammatory response in vitro. Cytokine 106: 101–107.CrossRefGoogle Scholar
  9. 9.
    Pan, J., Y. Jiang, Y. Lv, M. Li, S. Zhang, J. Liu, Y. Zhu, and H. Zhang. 2018. Comparison of the main compounds in Fuding white tea infusions from various tea types. Food Science and Biotechnology 27: 1311–1318.CrossRefGoogle Scholar
  10. 10.
    Souza, A.H.P., R.C.G. Corrêa, L. Barros, R.C. Calhelha, C. Santos-Buelga, R.M. Peralta, A. Bracht, M. Matsushita, and I.C.F.R. Ferreira. 2015. Phytochemicals an bioactive properties of Ilex paraguariensis: An in vitro comparative study between the whole plant leaves and stems. Food Research International 78: 286–294.CrossRefGoogle Scholar
  11. 11.
    Bittencourt, L.S., D.C. Machado, M.M. Machado, G.F. Dos Santos, T.D. Algarve, D.R. Marinowic, E.E. Ribeiro, F.A. Soares, F. Barbisan, M.L. Athayde, and I.B.M. Cruz. 2013. The protective effects of guarana extract (Paullinia cupana) on fibroblast NIH-3T3 cells exposed to sodium nitroprussiade. Food and Chemical Toxicology 53: 119–125.CrossRefGoogle Scholar
  12. 12.
    Schimpl, F.C., J.F. da Silva, J.F. Gonçalves, and P. Mazzafera. 2013. Guarana: Revisiting a highly caffeinated plant from the Amazon. Journal of Ethnopharmacology 150 (1): 14–31.CrossRefGoogle Scholar
  13. 13.
    Pandiaraj, P., A. Gnavavelbabu, and P. Saravanan. 2015. Synthesis of CuO nanofluids and analysis of its increased effective thermal conductivity for flat plate heat pipe. International Journal of ChemTech Research 8 (4): 1972–1976.Google Scholar
  14. 14.
    Krewer, C.C., L. Suleiman, M.M.F. Duarte, E.E. Ribeiro, C.P. Mostardeiro, M.A.E. Montano, M.I.U. Marques da Rocha, T.D. Algarve, G. Bresciani, and I.B.M. da Cruz. 2014. Guaraná, a supplement rich in caffeine and catechin, modulates cytokines: Evidence from human in vitro and in vivo protocols. European Food Research and Technology 239: 49–57.Google Scholar
  15. 15.
    Werner, C., F.C. Cadoná, I.B.M. da Cruz, E.R.D.S. Flôres, A.K. Machado, M.R. Fantinel, G.C.C. Weis, C.E. Assmann, A.O. Alves, B.D.S.R. Bonadiman, E.E. Ribeiro, and M.A.E. Montano. 2017. A chemical compound based on methylxanthine-polyphenols lowers nitric oxide levels and increases post-thaw-human sperm viability. Zygote 25: 719–730.CrossRefGoogle Scholar
  16. 16.
    Higgins, J.P., B. Kavita, P.A. Deuster, and J. Shearer. 2018. Energy Drinks: A Contemporary Issues Paper. Currents Sports Medicine Report 17: 65–72.CrossRefGoogle Scholar
  17. 17.
    Barbisan, F., V.F. Azzolin, C.F. Teixeira, M.H. Mastella, E.E. Ribeiro, P.A.S. do Prado-Lima, R.S. Praia, M.M.F.D. Duarte, and I.B.M. Cruz. 2017. Xanthine-catechin mixture enchances lithium-induced anti-inflammatory response in activated macrophages in vitro. BioMed Research International 2017: 4151594.CrossRefGoogle Scholar
  18. 18.
    da Cruz Jung, I.E., A.K. Machado, I.B.M. Cruz, F. Barbisan, V.F. Azzolin, T. Duarte, M.M.F. Duarte, P.A.S. do Prado-Lima, G.V. Bochi, G. Scola, and R.N. Moresco. 2016. Haloperidol and Risperidone at high concentrations activate an in vitro inflammatory response of RAW 264.7 macrophage cells by induction of apoptosis and modification of cytokine levels. Psychopharmacology 233: 1715–1723.CrossRefGoogle Scholar
  19. 19.
    Jentzsch, A.M., H. Bachmann, P. Fürst, and H.K. Biesalski. 1996. Improved analysis of maldondialdehyde in human body fluids. Free Radical Biology & Medicine 20: 251–256.CrossRefGoogle Scholar
  20. 20.
    Levine, R.L., D. Garland, C.N. Oliver, A. Amici, I. Climent, A.G. Lenz, B.W. Ahn, S. Shaltiel, and E.R. Stadtman. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 186: 464–478.CrossRefGoogle Scholar
  21. 21.
    Voiculescu, M., I. Ghiță, A. Segărceanu, I. Fulga, and O. Coman. 2014. Molecular and pharmacodynamic interactions between caffeine and dopaminergic system. Journal of Medicine and Life 7 (Spec Iss 4): 30–38.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Griesinger, C., B. Desprez, S. Coecke, W. Casey, and V. Zuang. 2016. Validation of Alternative In Vitro Methods to Animal Testing: Concepts, Challenges. Processes and Tools. Advances in Experimental Medicine and Biology 132: 856–865.Google Scholar
  23. 23.
    Schott, K.L., C.E. Assmann, C.F. Teixeira, A.A. Boligon, S.R. Waechter, M.M.F. Duarte, and I.B.M. da Cruz. 2018. Brazil nut improves the oxidative metabolism of superoxide-hydrogen peroxide chemically-imbalanced human fibroblasts in a nutrigenomic manner. Food Chemical and Toxicology 121: 519–526.CrossRefGoogle Scholar
  24. 24.
    Chiara, M., M.P. Rapagnani, and S.M. Stahl. 2011. Ziprasidone hydrocloride: what role in the management of schizophrenia? Journal Of Central Nervous System Disease 3: 1–16.Google Scholar
  25. 25.
    Weigert, A., A. von Knethen, D. Fuhrmann, N. Dehne, and B. Brüne. 2018. Redox-signals and macrophage biology. Molecular Aspects of Medicine 63: 70–87.CrossRefGoogle Scholar
  26. 26.
    Taciak, B., M. Białasek, A. Braniewska, Z. Sas, P. Sawicka, L. Kiraga, T. Rygiel, and M. Król. 2018. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS One 13: e0198943.CrossRefGoogle Scholar
  27. 27.
    Palacz-Wrobel, M., P. Borkowska, M. Paul-Samojednv, M. Kowalczyk, A. Fila-Danilow, R. Suchanek-Raif, and J. Kowalski. 2017. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages. Biomedicine and Pharmacoterapy 93: 1205–1212.CrossRefGoogle Scholar
  28. 28.
    Zhong, Y., Y.S. Chiou, M.H. Pan, and F. Shahidi. 2012. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chemistry 134: 742–748.CrossRefGoogle Scholar
  29. 29.
    Kempf, K., C. Herder, I. Erlund, H. Kolp, S. Martin, M. Carstensen, W. Koenig, J. Sundvall, S. Bidel, S. Kuha, and T. Jaakko. 2010. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. The American Journal of Clinical Nutrition 91: 950–957.CrossRefGoogle Scholar
  30. 30.
    Gandhi, K.K., J.M. Williams, M. Menza, M. Galazyn, and N.L. Benowitz. 2010. Higher serum caffeine in smokers with schizophrenia compared to smoking controls. Drug and Alcohol Dependence 110: 151–155.CrossRefGoogle Scholar
  31. 31.
    Ribeiro, J.A., and A.M. Sebastião. 2010. Caffeine and adenosine. Journal of Alzheimer’s Disease 20 (Suppl 1): S3–S15.CrossRefGoogle Scholar
  32. 32.
    Martínez-Pinilla, E., A. Oñatibia-Astibia, and R. Franco. 2015. The relevance of theobromine for the beneficial effects of cocoa consumption. Frontiers in Pharmacology 20: 6–30.Google Scholar
  33. 33.
    Mitchell, E.S., M. Slettenaar, N. vd Meer, C. Transler, L. Jans, F. Quadt, and M. Berry. 2011. Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure. Physiology and Behaviour 104: 816–822.CrossRefGoogle Scholar
  34. 34.
    Sunil, V.R., K.N. Vayas, J.A. Cervelli, R. Malaviya, L. Hall, C.B. Massa, A.J. Gow, J.D. Laskin, and D.L. Laskin. 2014. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation. Experimental and Molecular Pathology 97: 89–98.CrossRefGoogle Scholar
  35. 35.
    Almario, B., S. Wu, J. Peng, D. Alapati, S. Chen, and I.R. Sosenko. 2012. Pentoxifylline and prevention of hyperoxia-induced lung -injury in neonatal rats. Pediatric Research 71: 583–589.CrossRefGoogle Scholar
  36. 36.
    Ashraf, S., W. Graham, and H. Hayreh. 2018. A Case of Ziprasidone-Induced Hypersensitivity Pneumonitis: A Previously Unreported Side Effect of an Atypical Antipsychotic. American Journal of Respiratory and Critical Care Medicine 197: A6941.Google Scholar
  37. 37.
    Malekifard, F., N. Delirezh, R. Hobbenaghi, and H. Malekinejad. 2015. Immunotherapic effects of pentoxifylline in type 1 diabetic mice and its role in the response of T-helper lymphocytes. Iranian Journal of Basic Medical Sciences 18: 247–252.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thiago Duarte
    • 1
  • Fernanda Barbisan
    • 2
    • 3
    Email author return OK on get
  • Beatriz Sadigurski Nunes da Cunha
    • 3
  • Verônica Farina Azzolin
    • 2
  • Bárbara Osmarin Turra
    • 3
  • Marta Maria Medeiros Frescura Duarte
    • 4
  • Ivo Emilio da Cruz Jung
    • 1
  • Euler Esteves Ribeiro
    • 5
  • Pedro Antônio do Prado-Lima
    • 6
  • Ivana Beatrice Mânica da Cruz
    • 1
    • 2
  1. 1.Postgraduate Program of PharmacologyFederal University of Santa Maria (UFSM)Santa MariaBrazil
  2. 2.Postgraduate Program of GerontologyFederal University of Santa Maria (UFSM)Santa MariaBrazil
  3. 3.Biogenomic Laboratory, Center of Health SciencesFederal University of Santa Maria (UFSM)Santa MariaBrazil
  4. 4.Center of Health SciencesLutheran University of Brazil (ULBRA)Santa MariaBrazil
  5. 5.Foundation Open University of the Third AgeManausBrazil
  6. 6.Brain InstituteCatholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations