Advertisement

Interleukin (IL)-35 Suppresses IL-6 and IL-8 Production in IL-17A-Stimulated Human Periodontal Ligament Cells

  • Satoru Shindo
  • Yoshitaka Hosokawa
  • Ikuko Hosokawa
  • Hideki Shiba
ORIGINAL ARTICLE
  • 45 Downloads

Abstract

Interleukin (IL)-35 is a novel anti-inflammatory cytokine that is produced by regulatory T cells. IL-35 is reported to suppress IL-17A-producing helper T (Th17) cell activation. IL-17A is related to progression of periodontitis. Furthermore, IL-35 and IL-17A are detected in human gingival crevicular fluid. However, the effect of IL-35 and interaction between IL-35 and IL-17A on pro-inflammatory cytokine production in human periodontal resident cells are still unclear. The aim of this study was to clarify the effect of IL-35 on IL-6 and IL-8 production in human periodontal ligament cells (HPDLCs) stimulated with IL-17A. IL-35 inhibited IL-6 and IL-8 production in IL-17A-stimulated HPDLCs. Moreover, western blot analysis showed that IL-35 suppressed extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-κB p65 phosphorylation in IL-17A-stimulated HPDLCs. Our findings suggested that IL-35 produced from regulatory T cells might inhibit progression of periodontitis by decreasing IL-17A-induced levels of IL-6 and IL-8.

KEY WORDS

IL-35 IL-17A IL-6 IL-8 human periodontal ligament cells 

Notes

Funding Information

This study was supported by Grants-in-Aid for Young Scientists (Start-up) from the Japan Society for the Promotion of Science KAKENHI (Grant No. JP17H06896).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Taubman, M.A., H. Yoshie, J.L. Ebersole, D.J. Smith, and C.L. Olson. 1984. Host response in experimental periodontal disease. Journal of Dental Research 63: 455–460.CrossRefPubMedGoogle Scholar
  2. 2.
    Cardoso, C.R., G.P. Garlet, G.E. Crippa, A.L. Rosa, W.M. Júnior, M.A. Rossi, and J.S. Silva. 2009. Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease. Oral Microbiology and Immunology 24: 1–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Kotake, S., N. Udagawa, N. Takahashi, K. Matsuzaki, K. Itoh, S. Ishiyama, S. Saito, K. Inoue, N. Kamatani, M.T. Gillespie, T.J. Martin, and T. Suda. 1999. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. Journal of Clinical Investigation 103: 1345–1352.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shibata, M., Y. Shintaku, K. Matsuzaki, and S. Uematsu. 2014. The effect of IL-17 on the production of proinflammatory cytokines and matrix metalloproteinase-1 by human periodontal ligament fibroblasts. Orthodontics & Craniofacial Research 17 (1): 60–68.CrossRefGoogle Scholar
  5. 5.
    Bendtzen, K. 1988. Interleukin 1, interleukin 6 and tumor necrosis factor in infection, inflammation and immunity. Immunology Letters 19: 183–191.CrossRefPubMedGoogle Scholar
  6. 6.
    Hashizume, M., N. Hayakawa, and M. Mihara. 2008. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology 47: 1635–1640.CrossRefPubMedGoogle Scholar
  7. 7.
    Bettelli, E., Y. Carrier, W. Gao, T. Korn, T.B. Strom, M. Oukka, H.L. Weiner, and V.K. Kuchroo. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238.CrossRefPubMedGoogle Scholar
  8. 8.
    Fredriksson, M., K. Bergström, and B. Asman. 2002. IL-8 and TNF-alpha from peripheral neutrophils and acute-phase proteins in periodontitis. Journal of Clinical Periodontology 29: 123–128.CrossRefPubMedGoogle Scholar
  9. 9.
    Devergne, O., M. Birkenbach, and E. Kieff. 1997. Epstein–Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proceedings of the National Academy of Sciences 94: 12041–12046.CrossRefGoogle Scholar
  10. 10.
    Collison, L.W., C.J. Workman, T.T. Kuo, K. Boyd, Y. Wang, K.M. Vignali, R. Cross, D. Sehy, R.S. Blumberg, and D.A. Vignali. 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566–569.CrossRefPubMedGoogle Scholar
  11. 11.
    Shen, P., T. Roch, V. Lampropoulou, R.A. O'Connor, U. Stervbo, E. Hilgenberg, S. Ries, V.D. Dang, Y. Jaimes, C. Daridon, R. Li, L. Jouneau, P. Boudinot, S. Wilantri, I. Sakwa, Y. Miyazaki, M.D. Leech, R.C. McPherson, S. Wirtz, M. Neurath, K. Hoehlig, E. Meinl, A. Grützkau, J.R. Grün, K. Horn, A.A. Kühl, T. Dörner, A. Bar-Or, S.H.E. Kaufmann, S.M. Anderton, and S. Fillatreau. 2014. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507: 366–370.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Olson, B.M., E. Jankowska-Gan, J.T. Becker, D.A. Vignali, W.J. Burlingham, and D.G. McNeel. 2012. Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. Journal of Immunology 189: 5590–5601.CrossRefGoogle Scholar
  13. 13.
    Okada, K., T. Fujimura, T. Kikuchi, M. Aino, Y. Kamiya, A. Izawa, Y. Iwamura, H. Goto, I. Okabe, E. Miyake, Y. Hasegawa, M. Mogi, and A. Mitani. 2017. Effect of interleukin (IL)-35 on IL-17 expression and production by human CD4+ T cells. PeerJ 5: e2999.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang, R.X., C.R. Yu, R.M. Mahdi, and C.E. Egwuagu. 2012. Novel IL27p28/IL12p40 cytokine suppressed experimental autoimmune uveitis by inhibiting autoreactive Th1/Th17 cells and promoting expansion of regulatory T cells. Journal of Biological Chemistry 287: 36012–36021.CrossRefPubMedGoogle Scholar
  15. 15.
    Thiolat, A., A. Denys, M. Petit, J. Biton, D. Lemeiter, R. Herve, D. Lutomski, M.C. Boissier, and N. Bessis. 2014. Interleukin-35 gene therapy exacerbates experimental rheumatoid arthritis in mice. Cytokine 69: 87–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Mitani, A., W. Niedbala, T. Fujimura, M. Mogi, S. Miyamae, N. Higuchi, A. Abe, T. Hishikawa, M. Mizutani, Y. Ishihara, H. Nakamura, K. Kurita, N. Ohno, Y. Tanaka, M. Hattori, and T. Noguchi. 2015. Increased expression of interleukin (IL)-35 and IL-17, but not IL-27, in gingival tissues with chronic periodontitis. Journal of Periodontology 86: 301–309.CrossRefPubMedGoogle Scholar
  17. 17.
    Shindo, S., Y. Hosokawa, I. Hosokawa, K. Ozaki, and T. Matsuo. 2014. Genipin inhibits IL-1β-induced CCL20 and IL-6 production from human periodontal ligament cells. Cellular Physiology and Biochemistry 33: 357–364.CrossRefPubMedGoogle Scholar
  18. 18.
    Jung, Y.J., Y.J. Choi, S.J. An, H.R. Lee, H.K. Jun, and B.K. Choi. 2017. Tannerella forsythia GroEL induces inflammatory bone resorption and synergizes with interleukin-17. Molecular Oral Microbiology 32: 301–313.CrossRefPubMedGoogle Scholar
  19. 19.
    Köseoğlu, S., M. Sağlam, T. Pekbağrıyanık, L. Savran, and R. Sütçü. 2015. Level of interleukin-35 in gingival crevicular fluid, saliva, and plasma in periodontal disease and health. Journal of Periodontology 24: 1–6.Google Scholar
  20. 20.
    Wilson, N.J., K. Boniface, J.R. Chan, B.S. McKenzie, W.M. Blumenschein, J.D. Mattson, B. Basham, K. Smith, T. Chen, F. Morel, J.C. Lecron, R.A. Kastelein, D.J. Cua, T.K. McClanahan, E.P. Bowman, and Malefyt R. de Waal. 2007. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunology 8: 950–957.CrossRefPubMedGoogle Scholar
  21. 21.
    Takahashi, K., T. Azuma, H. Motohira, D.F. Kinane, and S. Kitetsu. 2005. The potential role of interleukin-17 in the immunopathology of periodontal disease. Journal of Clinical Periodontology 32: 369–374.CrossRefPubMedGoogle Scholar
  22. 22.
    Lin, D., L. Li, Y. Sun, W. Wang, X. Wang, Y. Ye, X. Chen, and Y. Xu. 2014. IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB pathways. Immunology 144: 472–485.CrossRefGoogle Scholar
  23. 23.
    Wu, Y., L. Zhu, L. Liu, J. Zhang, and B. Peng. 2014. Interleukin-17A stimulates migration of periodontal ligament fibroblasts via p38 MAPK/NF-κB-dependent MMP-1 expression. Journal of Cellular Physiology 229: 292–299.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang, Y., Y. Mao, J. Zhang, G. Shi, L. Cheng, Y. Lin, Y. Li, X. Zhang, Y. Zhang, X. Chen, J. Deng, X. Su, L. Dai, Y. Yang, S. Zhang, D. Yu, Y. Wei, and H. Deng. 2018. IL-35 recombinant protein reverses inflammatory bowel disease and psoriasis through regulation of inflammatory cytokines and immune cells. Journal of Cellular and Molecular Medicine 22: 1014–1025.PubMedGoogle Scholar
  25. 25.
    Zhang, X.H., Y. Zhou, J.M. Zhang, S.Y. Zhou, M. Wang, R. Feng, F.E. Feng, Q.M. Wang, X.L. Zhu, X.S. Zhao, M. Lv, Y. Kong, Y.J. Chang, and X.J. Huang. 2015. IL-35 inhibits acute graft-versus-host disease in a mouse model. International Immunopharmacology 29: 383–392.Google Scholar
  26. 26.
    Wu, S., Y. Li, Y. Li, L. Yao, T. Lin, S. Jiang, H. Shen, L. Xia, and J. Lu. 2016. Interleukin-35 attenuates collagen-induced arthritis through suppression of vascular endothelial growth factor and its receptors. International Immunopharmacology 34: 71–77.CrossRefPubMedGoogle Scholar
  27. 27.
    Hu, L., C. Chen, J. Zhang, K. Wu, X. Zhang, H. Liu, and J. Hou. 2017. IL-35 pretreatment alleviates lipopolysaccharide-induced acute kidney injury in mice by inhibiting NF-κB activation. Inflammation 40: 1393–1400.CrossRefPubMedGoogle Scholar
  28. 28.
    Chen, X., S. Hao, Z. Zhao, J. Liu, Q. Shao, F. Wang, D. Sun, Y. He, W. Gao, and H. Mao. 2018. Interleukin 35: inhibitory regulator in monocyte-derived dendritic cell maturation and activation. Cytokine 108: 43–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Sha, X., S. Meng, X. Li, H. Xi, M. Maddaloni, D.W. Pascual, H. Shan, X. Jiang, H. Wang, and X.F. Yang. 2015. Interleukin-35 inhibits endothelial cell activation by suppressing MAPK-AP-1 pathway. Journal of Biological Chemistry 290: 19307–19318.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication December/2018

Authors and Affiliations

  • Satoru Shindo
    • 1
  • Yoshitaka Hosokawa
    • 2
  • Ikuko Hosokawa
    • 2
  • Hideki Shiba
    • 1
  1. 1.Department of Biological Endodontics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of Conservative Dentistry, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan

Personalised recommendations