, Volume 42, Issue 3, pp 799–810 | Cite as

The Expression of CXCL10/CXCR3 and Effect of the Axis on the Function of T Lymphocyte Involved in Oral Lichen Planus

  • Jiaxiang Fang
  • Chen Wang
  • Chen Shen
  • Jing Shan
  • Xuewei Wang
  • Lin Liu
  • Yuan FanEmail author


The etiology of oral lichen planus (OLP) is still not clear. The purpose of this study was to explore the role of CXC chemokine receptor 3(CXCR3) and its ligand CXC motif chemokine 10(CXCL10) in the pathogenesis of OLP. We examined the expression of CXCR3 and CXCL10 in OLP patients and healthy controls by quantitative real-time PCR, Western blotting, ELISAs, and immunohistochemistry, respectively. Moreover, we detected the effects of CXCL10/CXCR3 axis on T lymphocyte migration, proliferation and apoptosis by Transwell assays, CCK8 assays, and flow cytometry. We found that the expression of CXCR3 and CXCL10 was significantly increased in OLP patients. In addition, T lymphocyte migration rate of CXCL10 stimulation group was significantly higher than that of control and CXCR3 antagonist groups. After antagonizing CXCR3, the migration ability of T lymphocytes was significantly decreased, and regardless of whether CXCL10 was added in the upper chamber culture medium, the number of migrating cells was similar. The addition of CXCL10 stimulant could stimulate the proliferation of T lymphocytes, but there was no significant difference compared with control group. After antagonizing CXCR3, the proliferation rate of T lymphocytes was significantly reduced. However, there were no significant differences in the apoptosis rates of T lymphocytes between CXCL10 stimulation group, antagonist CXCR3 group, and control group. Due to the change of expression in CXCR3 and CXCL10, and its interaction in mediating the directional migration of peripheral blood T lymphocytes, affecting the proliferation of T lymphocytes, it suggests that CXCL10/CXCR3 axis may be related to the immune mechanism of OLP.


CXCR3 CXCL10 oral lichen planus chemokine 


Author Contributions

Conceived and designed the experiments: FY. Performed the experiments: FJ and WC. Analyzed the data: SC, SJ, WX, and LL. Wrote the paper: FJ and WC.

Funding Information

This work was supported by the National Natural Science Foundation of China (Grant No. 81470748).

Compliance with Ethical Standards

Informed Consent

All experiments were informed consent by participants and approved by the Ethics Committee of Nanjing Medical University, Nanjing, China. (2014-132)

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    McCartan, B.E., and C.M. Healy. 2008. The reported prevalence of oral lichen planus: A review and critique. Journal of Oral Pathology & Medicine 37 (8): 447–453.CrossRefGoogle Scholar
  2. 2.
    van der Waal, I. 2010. Potentially malignant disorders of the oral and oropharyngeal mucosa; present concepts of management. Oral Oncology 46 (6): 423–425.PubMedCrossRefGoogle Scholar
  3. 3.
    Wu, Y., G. Zhou, H. Zeng, C.R. Xiong, M. Lin, and H.M. Zhou. 2010. A randomized double-blind, positive-control trial of topical thalidomide in erosive oral lichen planus. Oral Surgery Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 110 (2): 188–195.CrossRefGoogle Scholar
  4. 4.
    Crincoli, V., M.B. Di Bisceglie, M. Scivetti, A. Lucchese, S. Tecco, and F. Festa. 2011. Oral lichen planus: Update on etiopathogenesis, diagnosis and treatment. Immunopharmacol Immunotoxicol 33 (1): 11–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Suresh, S.S., K. Chokshi, S. Desai, R. Malu, and A. Chokshi. 2016. Medical management of oral lichen planus: A systematic review. Journal of Clinical and Diagnostic Research 10 (2): ZE10–ZE15.PubMedGoogle Scholar
  6. 6.
    Wang, Y., J. Zhou, S. Fu, C. Wang, and B. Zhou. 2015. A study of association between oral lichen planus and immune balance of Th1/Th2 cells. Inflammation 38 (5): 1874–1879.PubMedCrossRefGoogle Scholar
  7. 7.
    Peng, W.Y., Y. Ye, B.A. Rabinovich, C.W. Liu, Y.Y. Lou, M.Y. Zhang, M. Whittington, Y. Yang, W.W. Overwijk, G. Lizee, and P. Hwu. 2010. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clinical Cancer Research 16 (22): 5458–5468.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Altara, R., M. Manca, R.D. Brandao, A. Zeidan, G.W. Booz, and F.A. Zouein. 2016. Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clinical Science (London, England) 130 (7): 463–478.CrossRefGoogle Scholar
  9. 9.
    van den Borne, P., P.H. Quax, I.E. Hoefer, and G. Pasterkamp. 2014. The multifaceted functions of CXCL10 in cardiovascular disease. BioMed Research International 2014: 893106.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Van Raemdonck, K., P.E. Van den Steen, S. Liekens, J. Van Damme, and S. Struyf. 2015. CXCR3 ligands in disease and therapy. Cytokine & Growth Factor Reviews 26 (3): 311–327.CrossRefGoogle Scholar
  11. 11.
    Andalib, A., H. Doulabi, M. Najafi, M. Tazhibi, and A. Rezaie. 2011. Expression of chemokine receptors on Th1/Th2 CD4+ lymphocytes in patients with multiple sclerosis. Iranian Journal of Immunology 8 (1): 1–10.PubMedGoogle Scholar
  12. 12.
    Muller, M., S. Carter, M.J. Hofer, and I.L. Campbell. 2010. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity—a tale of conflict and conundrum. Neuropathology and Applied Neurobiology 36 (5): 368–387.PubMedCrossRefGoogle Scholar
  13. 13.
    Marques, C.P., P. Kapil, D.R. Hinton, C. Hindinger, S.L. Nutt, R.M. Ransohoff, T.W. Phares, S.A. Stohlman, and C.C. Bergmann. 2011. CXCR3-dependent plasma blast migration to the central nervous system during viral encephalomyelitis. Journal of Virology 85 (13): 6136–6147.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fallahi, P., S.M. Ferrari, G. Elia, F. Nasini, M. Colaci, D. Giuggioli, R. Vita, S. Benvenga, C. Ferri, and A. Antonelli. 2016. Novel therapies for thyroid autoimmune diseases. Expert Review of Clinical Pharmacology 9 (6): 853–861.PubMedCrossRefGoogle Scholar
  15. 15.
    Antonelli, A., S.M. Ferrari, D. Giuggioli, E. Ferrannini, C. Ferri, and P. Fallahi. 2014. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmunity Reviews 13 (3): 272–280.PubMedCrossRefGoogle Scholar
  16. 16.
    Antonelli, A., S.M. Ferrari, A. Corrado, E. Ferrannini, and P. Fallahi. 2014. CXCR3, CXCL10 and type 1 diabetes. Cytokine & Growth Factor Reviews 25 (1): 57–65.CrossRefGoogle Scholar
  17. 17.
    Ferrari, S.M., I. Ruffilli, M. Colaci, A. Antonelli, C. Ferri, and P. Fallahi. 2015. CXCL10 in psoriasis. Advances in Medical Sciences 60 (2): 349–354.PubMedCrossRefGoogle Scholar
  18. 18.
    van der Meij, E.H., and I. van der Waal. 2003. Lack of clinicopathologic correlation in the diagnosis of oral lichen planus based on the presently available diagnostic criteria and suggestions for modifications. Journal of Oral Pathology & Medicine 32 (9): 507–512.CrossRefGoogle Scholar
  19. 19.
    Ferri, E.P., C.B. Gallo, C.S. Abboud, W.H. Yanaguizawa, A. Horliana, D. Silva, C. Pavani, S.K. Bussadori, F.D. Nunes, R.A. Mesquita-Ferrari, K.P.S. Fernandes, and M.F.S.D. Rodrigues. 2018. Efficacy of photobiomodulation on oral lichen planus: A protocol study for a double-blind, randomised controlled clinical trial. BMJ Open 8 (10): e024083.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hu, J.Y., J. Zhang, J.L. Cui, X.Y. Liang, R. Lu, G.F. Du, X.Y. Xu, and G. Zhou. 2013. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine 62 (1): 141–145.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu, L.K., X.Y. Jiang, X.X. Zhou, D.M. Wang, X.L. Song, and H.B. Jiang. 2010. Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: Correlation with the clinicopathological features and patient outcome. Modern Pathology 23 (2): 213–224.PubMedCrossRefGoogle Scholar
  22. 22.
    Chaiyarit, P., K. Luengtrakoon, W. Wannakasemsuk, V. Vichitrananda, P. Klanrit, D. Hormdee, and R. Noisombut. 2017. Biological functions of melatonin in relation to pathogenesis of oral lichen planus. Medical Hypotheses 104: 40–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Flier, J., D.M. Boorsma, P.J. van Beek, C. Nieboer, T.J. Stoof, R. Willemze, and C.P. Tensen. 2001. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. The Journal of Pathology 194 (4): 398–405.PubMedCrossRefGoogle Scholar
  24. 24.
    Aggarwal, A., S. Agarwal, and R. Misra. 2007. Chemokine and chemokine receptor analysis reveals elevated interferon-inducible protein-10 (IP)-10/CXCL10 levels and increased number of CCR5+ and CXCR3+ CD4 T cells in synovial fluid of patients with enthesitis-related arthritis (ERA). Clinical and Experimental Immunology 148 (3): 515–519.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zhou, H., J. Wu, T. Wang, X. Zhang, and D. Liu. 2016. CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomedicine & Pharmacotherapy 82: 479–488.CrossRefGoogle Scholar
  26. 26.
    Coppieters, K.T., N. Amirian, P.P. Pagni, C. Baca Jones, A. Wiberg, S. Lasch, E. Hintermann, U. Christen, and M.G. von Herrath. 2013. Functional redundancy of CXCR3/CXCL10 signaling in the recruitment of diabetogenic cytotoxic T lymphocytes to pancreatic islets in a virally induced autoimmune diabetes model. Diabetes 62 (7): 2492–2499.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mirones, I., I. de Prada, A.M. Gomez, A. Luque, R. Martin, M.A. Perez-Jimenez, L. Madero, J. Garcia-Castro, and M. Ramirez. 2013. A role for the CXCR3/CXCL10 axis in Rasmussen encephalitis. Pediatric Neurology 49 (6): 451–457 e451.PubMedCrossRefGoogle Scholar
  28. 28.
    Ruschpler, P., P. Lorenz, W. Eichler, D. Koczan, C. Hanel, R. Scholz, C. Melzer, H.J. Thiesen, and P. Stiehl. 2003. High CXCR3 expression in synovial mast cells associated with CXCL9 and CXCL10 expression in inflammatory synovial tissues of patients with rheumatoid arthritis. Arthritis Research & Therapy 5 (5): R241–R252.CrossRefGoogle Scholar
  29. 29.
    Teleshova, N., M. Pashenkov, Y.M. Huang, M. Soderstrom, P. Kivisakk, V. Kostulas, M. Haglund, and H. Link. 2002. Multiple sclerosis and optic neuritis: CCR5 and CXCR3 expressing T cells are augmented in blood and cerebrospinal fluid. Journal of Neurology 249 (6): 723–729.PubMedCrossRefGoogle Scholar
  30. 30.
    Jatczak-Pawlik, I., D. Ksiazek-Winiarek, D. Wojkowska, K. Jozwiak, K. Jastrzebski, M. Pietruczuk, and A. Glabinski. 2016. The impact of multiple sclerosis relapse treatment on migration of effector T cells—preliminary study. Neurologia i Neurochirurgia Polska 50 (3): 155–162.PubMedCrossRefGoogle Scholar
  31. 31.
    Cruise, M.W., J.R. Lukens, A.P. Nguyen, M.G. Lassen, S.N. Waggoner, and Y.S. Hahn. 2006. Fas ligand is responsible for CXCR3 chemokine induction in CD4+ T cell-dependent liver damage. Journal of Immunology 176 (10): 6235–6244.CrossRefGoogle Scholar
  32. 32.
    Bondar, C., R.E. Araya, L. Guzman, E.C. Rua, N. Chopita, and F.G. Chirdo. 2014. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One 9 (2): e89068.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Shimada, A., Y. Oikawa, Y. Yamada, Y. Okubo, and S. Narumi. 2009. The role of the CXCL10/CXCR3 system in type 1 diabetes. The Review of Diabetic Studies 6 (2): 81–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Ha, Y., H. Liu, S. Zhu, P. Yi, W. Liu, J. Nathanson, R. Kayed, B. Loucas, J. Sun, L.J. Frishman, M. Motamedi, and W. Zhang. 2017. Critical role of the CXCL10/C-X-C chemokine receptor 3 axis in promoting leukocyte recruitment and neuronal injury during traumatic optic neuropathy induced by optic nerve crush. The American Journal of Pathology 187 (2): 352–365.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    He, J., C. Lian, Y. Fang, J. Wu, J. Weng, X. Ye, and H. Zhou. 2015. Effect of CXCL10 receptor antagonist on islet cell apoptosis in a type I diabetes rat model. International Journal of Clinical and Experimental Pathology 8 (11): 14542–14548.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Sidahmed, A.M., A.J. Leon, S.E. Bosinger, D. Banner, A. Danesh, M.J. Cameron, and D.J. Kelvin. 2012. CXCL10 contributes to p38-mediated apoptosis in primary T lymphocytes in vitro. Cytokine 59 (2): 433–441.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jiaxiang Fang
    • 1
    • 2
  • Chen Wang
    • 1
    • 2
  • Chen Shen
    • 3
  • Jing Shan
    • 1
    • 2
  • Xuewei Wang
    • 1
    • 2
  • Lin Liu
    • 1
    • 2
  • Yuan Fan
    • 1
    • 2
    Email author
  1. 1.Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingChina
  2. 2.Department of Oral Medicine, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
  3. 3.Department of Special outpatient serviceHangzhou West Dental HospitalHangzhouChina

Personalised recommendations