Advertisement

Inflammation

pp 1–13 | Cite as

MiR-590-3p Attenuates Acute Kidney Injury by Inhibiting Tumor Necrosis Factor Receptor-Associated Factor 6 in Septic Mice

  • Jing Ma
  • Yu-tao Li
  • Shi-xiong Zhang
  • Shou-zhi Fu
  • Xian-zhi Ye
ORIGINAL ARTICLE
  • 36 Downloads

Abstract

Previous studies have been indicated that tumor necrosis factor receptor-associated factor 6 (TRAF6)-induced inflammation leads to acute kidney injury (AKI). How microRNA (miR) contributes to this process is poorly defined. The aim of this study was to investigate whether miR-590-3p regulated lipopolysaccharide (LPS)-induced inflammatory response by inhibiting TRAF6. LPS-induced septic mice were treated with adenovirus expressing miR-590-3p (ad-miR-590-3p) via tail-vein injection. AKI was evaluated by examining serum cystatin C (CysC), serum β2-microglobulin (β2-MG), and blood urea nitrogen (BUN). The mRNA and protein levels were assayed by RT-qPCR and western blotting, respectively. The proliferation of podocytes was monitored using the MTT assay. Cell apoptosis was analyzed by flow cytometry. Survival outcomes in ad-miR-590-3p-transfected septic mice were markedly improved compared with mice with LPS-induced sepsis. Ad-miR-590-3p transfection significantly attenuated LPS-induced AKI, which was reflected by an improved glomerular filtration rate (GFR) as determined by measuring CysC, β2-MG, and BUN. Moreover, we observed that miR-590-3p was a novel regulator of TRAF6, binding to its 3′-untranslated regions (3′-UTRs). In vitro, a miR-590-3p gain-of-function mutation blocked LPS-induced podocyte growth inhibition and apoptosis, as well as overactivation of the inflammatory response. miR-590-3p has the ability to suppress LPS-induced AKI and podocyte apoptosis by targeting TRAF6. This might provide a novel strategy for the treatment of LPS-induced renal injuries.

KEY WORDS

miR-590-3p sepsis AKI TRAF6 inflammatory response apoptosis 

Notes

Acknowledgments

We give thanks to the Department of Pathology, Wuhan Third Hospital of Wuhan University to provide technical support.

Compliance with Ethical Standards

The experiment was approved by the Ethics Committee of the Wuhan three hospital of Wuhan University (Wuhan, China) and performed in accordance with its guidelines.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    An, R., J. Feng, C. Xi, and J. Xu. 2018. miR-146a attenuates sepsis-induced myocardial dysfunction by suppressing IRAK1 and TRAF6 via targeting ErbB4 expression. Oxidative Medicine and Cellular Longevity 2018: 7163057: 1–9.CrossRefGoogle Scholar
  2. 2.
    Bhargava, R., C.J. Altmann, A. Andres-Hernando, R.G. Webb, K. Okamura, Y. Yang, S. Falk, E.P. Schmidt, and S. Faubel. 2013. Acute lung injury and acute kidney injury are established by four hours in experimental sepsis and are improved with pre, but not post, sepsis administration of TNF-alpha antibodies. PLoS One 8: e79037.CrossRefGoogle Scholar
  3. 3.
    Chen, C., Z. Liang, W. Huang, X. Li, F. Zhou, X. Hu, M. Han, X. Ding, and S. Xiang. 2015. Eps8 regulates cellular proliferation and migration of breast cancer. International Journal of Oncology 46: 205–214.CrossRefGoogle Scholar
  4. 4.
    Chen, F., S. He, R. Qiu, R. Pang, J. Xu, and J. Dong. 2010. Influence of silencing TRAF6 with shRNA on LPS/TLR4 signaling in vitro. Journal of Huazhong University of Science and Technology. Medical Sciences 30: 278–284.CrossRefGoogle Scholar
  5. 5.
    Dai, Y., P. Jia, Y. Fang, H. Liu, X. Jiao, J.C. He, and X. Ding. 2016. miR-146a is essential for lipopolysaccharide (LPS)-induced cross-tolerance against kidney ischemia/reperfusion injury in mice. Scientific Reports 6: 27091.CrossRefGoogle Scholar
  6. 6.
    Dai, Y., Z. Zhang, Y. Cao, J.L. Mehta, and J. Li. 2016. MiR-590-5p inhibits oxidized- LDL induced angiogenesis by targeting LOX-1. Scientific Reports 6: 22607.CrossRefGoogle Scholar
  7. 7.
    Emmerich, C.H., A. Ordureau, S. Strickson, J.S. Arthur, P.G. Pedrioli, D. Komander, and P. Cohen. 2013. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America 110: 15247–15252.CrossRefGoogle Scholar
  8. 8.
    Fischer, A. 2014. Gene therapy: Repair and replace. Nature 510: 226–227.CrossRefGoogle Scholar
  9. 9.
    Gao, M., X. Wang, X. Zhang, T. Ha, H. Ma, L. Liu, J.H. Kalbfleisch, X. Gao, R.L. Kao, D.L. Williams, and C. Li. 2015. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. Journal of Immunology 195: 672–682.CrossRefGoogle Scholar
  10. 10.
    He, A., R. Ji, J. Shao, C. He, M. Jin, and Y. Xu. 2016. TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-kappaB activation contribute to the anti-inflammatory effect of V8 in LPS-induced human cervical cancer SiHa cells. Inflammation 39: 172–181.CrossRefGoogle Scholar
  11. 11.
    He, P.P., X.P. Ouyang, Y.Y. Tang, L. Liao, Z.B. Wang, Y.C. Lv, G.P. Tian, G.J. Zhao, L. Huang, F. Yao, W. Xie, Y.L. Tang, W.J. Chen, M. Zhang, Y. Li, J.F. Wu, J. Peng, X.Y. Liu, X.L. Zheng, W.D. Yin, and C.K. Tang. 2014. MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages. Biochimie 106: 81–90.CrossRefGoogle Scholar
  12. 12.
    Karagiannis, G.S., J. Weile, G.D. Bader, and J. Minta. 2013. Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation. BMC Cardiovascular Disorders 13: 4.CrossRefGoogle Scholar
  13. 13.
    Lee, Y., I.Y. Lee, H.J. Yun, W.S. Lee, S. Kang, S.G. Cho, J.E. Lee, and E.J. Choi. 2016. BAT3 negatively regulates lipopolysaccharide-induced NF-kappaB signaling through TRAF6. Biochemical and Biophysical Research Communications 478: 784–790.CrossRefGoogle Scholar
  14. 14.
    Li, H.R., J. Liu, S.L. Zhang, T. Luo, F. Wu, J.H. Dong, Y.J. Guo, and L. Zhao. 2017. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC Complementary and Alternative Medicine 17: 18.CrossRefGoogle Scholar
  15. 15.
    Li, N., H. Xie, L. Li, J. Wang, M. Fang, N. Yang, and H. Lin. 2014. Effects of honokiol on sepsis-induced acute kidney injury in an experimental model of sepsis in rats. Inflammation 37: 1191–1199.CrossRefGoogle Scholar
  16. 16.
    Li, T.M., S.C. Liu, Y.H. Huang, C.C. Huang, C.J. Hsu, C.H. Tsai, S.W. Wang, and C.H. Tang. 2017. YKL-40-induced inhibition of miR-590-3p promotes interleukin-18 expression and angiogenesis of endothelial progenitor cells. International Journal of Molecular Sciences 18.CrossRefGoogle Scholar
  17. 17.
    Li, X.M., S. Zhang, X.S. He, P.D. Guo, X.X. Lu, J.R. Wang, J.M. Li, and H. Wu. 2016. Nur77-mediated TRAF6 signalling protects against LPS-induced sepsis in mice. J Inflamm (Lond) 13: 4.CrossRefGoogle Scholar
  18. 18.
    Lin, X., S. Steinberg, S.K. Kandasamy, J. Afzal, B. Mbiyangandu, S.E. Liao, Y. Guan, et al. 2016. Common miR-590 variant rs6971711 present Only in African Americans reduces miR-590 biogenesis. PLoS One 11: e0156065.CrossRefGoogle Scholar
  19. 19.
    Liu, J., J. Xu, H. Li, C. Sun, L. Yu, Y. Li, C. Shi, et al. 2015. miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas. Oncotarget 6: 29129–29142.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu, Y., Z. Xu, F. Ma, Y. Jia, and G. Wang. 2018. Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway. Biomedicine & Pharmacotherapy 107: 1393–1401.CrossRefGoogle Scholar
  21. 21.
    Liu, Y., L. Zhao, D. Li, Y. Yin, C.Y. Zhang, J. Li, and Y. Zhang. 2013. Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development. Protein & Cell 4: 932–941.CrossRefGoogle Scholar
  22. 22.
    Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.CrossRefGoogle Scholar
  23. 23.
    Lopes, J.A., P. Fernandes, S. Jorge, C. Resina, C. Santos, A. Pereira, J. Neves, F. Antunes, and A. Gomes da Costa. 2010. Long-term risk of mortality after acute kidney injury in patients with sepsis: A contemporary analysis. BMC Nephrology 11: 9.CrossRefGoogle Scholar
  24. 24.
    Loubaki, L., D. Chabot, I. Pare, M. Drouin, and R. Bazin. 2017. MiR-146a potentially promotes IVIg-mediated inhibition of TLR4 signaling in LPS-activated human monocytes. Immunology Letters 185: 64–73.CrossRefGoogle Scholar
  25. 25.
    Lv, F., Y. Huang, W. Lv, L. Yang, F. Li, J. Fan, and J. Sun. 2017. MicroRNA-146a ameliorates inflammation via TRAF6/NF-kappaB pathway in intervertebral disc cells. Medical Science Monitor 23: 659–664.CrossRefGoogle Scholar
  26. 26.
    Lv, Z., M. Hu, M. Fan, X. Li, J. Lin, J. Zhen, Z. Wang, H. Jin, and R. Wang. 2018. Podocyte-specific Rac1 deficiency ameliorates podocyte damage and proteinuria in STZ-induced diabetic nephropathy in mice. Cell Death & Disease 9: 342.CrossRefGoogle Scholar
  27. 27.
    Ma, H., X. Wang, T. Ha, M. Gao, L. Liu, R. Wang, K. Yu, J.H. Kalbfleisch, R.L. Kao, D.L. Williams, and C. Li. 2016. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor kappaB activation and p53-mediated apoptotic signaling. The Journal of Infectious Diseases 214: 1773–1783.CrossRefGoogle Scholar
  28. 28.
    Meng, Q., W. Zhang, X. Xu, J. Li, H. Mu, X. Liu, L. Qin, X. Zhu, and M. Zheng. 2018. The effects of TRAF6 on proliferation, apoptosis and invasion in osteosarcoma are regulated by miR-124. International Journal of Molecular Medicine 41: 2968–2976.PubMedGoogle Scholar
  29. 29.
    Pan, S., X. Yang, Y. Jia, Y. Li, R. Chen, M. Wang, D. Cai, and R. Zhao. 2015. Intravenous injection of microvesicle-delivery miR-130b alleviates high-fat diet-induced obesity in C57BL/6 mice through translational repression of PPAR-gamma. Journal of Biomedical Science 22: 86.CrossRefGoogle Scholar
  30. 30.
    Peng, Y., X. Zhang, Y. Wang, S. Li, J. Wang, and L. Liu. 2015. Overexpression of toll-like receptor 2 in glomerular endothelial cells and podocytes in septic acute kidney injury mouse model. Renal Failure 37: 694–698.CrossRefGoogle Scholar
  31. 31.
    Rosenberger, C.M., R.L. Podyminogin, A.H. Diercks, P.M. Treuting, J.J. Peschon, D. Rodriguez, M. Gundapuneni, M.J. Weiss, and A. Aderem. 2017. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathogens 13: e1006305.CrossRefGoogle Scholar
  32. 32.
    Souza, A.C., P.S. Yuen, and R.A. Star. 2015. Microparticles: markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI. Kidney International 87: 1100–1108.CrossRefGoogle Scholar
  33. 33.
    Stickel, N., G. Prinz, D. Pfeifer, P. Hasselblatt, A. Schmitt-Graeff, M. Follo, R. Thimme, J. Finke, J. Duyster, U. Salzer, and R. Zeiser. 2014. MiR-146a regulates the TRAF6/TNF-axis in donor T cells during GVHD. Blood 124: 2586–2595.CrossRefGoogle Scholar
  34. 34.
    Sun, G., W. Yang, Y. Zhang, and M. Zhao. 2017. Esculentoside A ameliorates cecal ligation and puncture-induced acute kidney injury in rats. Experimental Animals 66: 303–312.CrossRefGoogle Scholar
  35. 35.
    Walsh, M.C., J. Lee, and Y. Choi. 2015. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunological Reviews 266: 72–92.CrossRefGoogle Scholar
  36. 36.
    Wei, M., Z. Li, L. Xiao, and Z. Yang. 2015. Effects of ROS-relative NF-kappaB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury. Molecular Immunology 68: 261–271.CrossRefGoogle Scholar
  37. 37.
    Wu, S., W. Liu, and L. Zhou. 2016. MiR-590-3p regulates osteogenic differentiation of human mesenchymal stem cells by regulating APC gene. Biochemical and Biophysical Research Communications 478: 1582–1587.CrossRefGoogle Scholar
  38. 38.
    Wu, T., Y. Xiang, Y. Lv, D. Li, L. Yu, and R. Guo. 2017. miR-590-3p mediates the protective effect of curcumin on injured endothelial cells induced by angiotensin II. American Journal of Translational Research 9: 289–300.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Wu, Y., L.T. Song, J.S. Li, D.W. Zhu, S.Y. Jiang, and J.Y. Deng. 2017. MicroRNA-126 regulates inflammatory cytokine secretion in human gingival fibroblasts under high glucose via targeting tumor necrosis factor receptor associated factor 6. Journal of Periodontology 88: e179–e187.CrossRefGoogle Scholar
  40. 40.
    Xiao, F., Z. Huang, H. Li, J. Yu, C. Wang, S. Chen, Q. Meng, Y. Cheng, X. Gao, J. Li, Y. Liu, and F. Guo. 2011. Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways. Diabetes 60: 746–756.CrossRefGoogle Scholar
  41. 41.
    Xiao, F., J. Yu, B. Liu, Y. Guo, K. Li, J. Deng, J. Zhang, C. Wang, S. Chen, Y. du, Y. Lu, Y. Xiao, Z. Zhang, and F. Guo. 2014. A novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis. Diabetes 63: 2631–2642.CrossRefGoogle Scholar
  42. 42.
    Xu, L., P. Zhang, H. Guan, Z. Huang, X. He, X. Wan, H. Xiao, and Y. Li. 2016. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-beta, angiotensinogen expression and podocytes apoptosis through the nuclear factor-kappaB pathway. Journal of Diabetes Investigation 7: 680–688.CrossRefGoogle Scholar
  43. 43.
    Xu, M.X., M. Wang, and W.W. Yang. 2017. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-kappaB signaling and Nrf2 pathway in high fat diet fed mice. International Journal of Nanomedicine 12: 327–345.CrossRefGoogle Scholar
  44. 44.
    Yin, Y., F. Li, J. Shi, S. Li, J. Cai, and Y. Jiang. 2016. MiR-146a regulates inflammatory infiltration by macrophages in polymyositis/dermatomyositis by targeting TRAF6 and affecting IL-17/ICAM-1 pathway. Cellular Physiology and Biochemistry 40: 486–498.CrossRefGoogle Scholar
  45. 45.
    Zapata, J.M., M. Krajewska, S. Krajewski, S. Kitada, K. Welsh, A. Monks, N. McCloskey, J. Gordon, T.J. Kipps, R.D. Gascoyne, A. Shabaik, and J.C. Reed. 2000. TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. Journal of Immunology 165: 5084–5096.CrossRefGoogle Scholar
  46. 46.
    Zeng, K.W., L.X. Liao, H.N. Lv, F.J. Song, Q. Yu, X. Dong, J. Li, Y. Jiang, and P.F. Tu. 2015. Natural small molecule FMHM inhibits lipopolysaccharide-induced inflammatory response by promoting TRAF6 degradation via K48-linked polyubiquitination. Scientific Reports 5: 14715.CrossRefGoogle Scholar
  47. 47.
    Zhang, J., G. Ankawi, J. Sun, K. Digvijay, Y. Yin, M.H. Rosner, and C. Ronco. 2018. Gut-kidney crosstalk in septic acute kidney injury. Critical Care 22: 117.CrossRefGoogle Scholar
  48. 48.
    Zhang, S., J. Ma, L. Sheng, D. Zhang, X. Chen, J. Yang, and D. Wang. 2017. Total coumarins from Hydrangea paniculata show renal protective effects in lipopolysaccharide-induced acute kidney injury via anti-inflammatory and antioxidant activities. Frontiers in Pharmacology 8: 872.CrossRefGoogle Scholar
  49. 49.
    Zhao, S., G. Yang, P.N. Liu, Y.Y. Deng, Z. Zhao, T. Sun, X.Z. Zhuo, J.H. Liu, Y. Tian, J. Zhou, Z. Yuan, and Y. Wu. 2015. miR-590-3p is a novel microRNA in myocarditis by targeting nuclear factor kappa-B in vivo. Cardiology 132: 182–188.CrossRefGoogle Scholar
  50. 50.
    Zhou, L., and Y. Liu. 2015. Wnt/beta-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nature Reviews. Nephrology 11: 535–545.CrossRefGoogle Scholar
  51. 51.
    Zu, C., S. Liu, W. Cao, Z. Liu, H. Qiang, Y. Li, C. Cheng, L. Ji, J. Li, and J. Li. 2017. MiR-590-3p suppresses epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma by inhibiting SIP1 expression. Oncotarget 8: 34698–34708.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Emergency, Optics Valley hospitalWuhan Third Hospital of Wuhan UniversityWuhanChina

Personalised recommendations