, Volume 42, Issue 2, pp 516–525 | Cite as

Role of Thymoquinone in Cardiac Damage Caused by Sepsis from BALB/c Mice

  • Hongyang Liu
  • Yan Sun
  • Ying Zhang
  • Guang Yang
  • Lipeng Guo
  • Yue Zhao
  • Zuowei PeiEmail author


Sepsis is a major health complication causing patient mortality and increased healthcare costs. Cardiac dysfunction, an important consequence of sepsis, affects mortality. We previously reported that thymoquinone (TQ) protected against hyperlipidemia and doxorubicin-induced cardiac damage. This study investigated the possible protective effects of TQ against cardiac damage in septic BALB/c mice. Eight-week-old male BALB/c mice were divided into four groups: control, TQ, cecal ligation and puncture (CLP), and TQ + CLP. CLP was performed after 2-week TQ gavage. After 48 h, we measured the histopathological alterations of the cardiac tissue and the plasma levels of troponin-T (cTnT) and ATP. We evaluated autophagy (p62 and beclin 1), pyroptosis (NLRP3, caspase-1, interleukin [IL]-1β, and IL-18) at the gene and protein levels and IL-6 and tumor necrosis factor-α (TNF-α) at the gene level. Our results demonstrated that TQ administration significantly reduced intestinal histological alterations. TQ inhibited plasma cTnT levels; improved ATP; significantly inhibited p62, NLRP3, caspase-1, IL-1β, IL-18, IL-6, TNF-α, and MCP-1expressions; and increased beclin 1 and IL-10 level. The phosphatidylinositide 3-kinase level was significantly decreased in the TQ + CLP group versus the CLP group. These results suggest that TQ effectively modulates autophagy, pyroptosis, and pro-inflammatory, making it important in the treatment of sepsis-induced cardiac damage.


sepsis thymoquinone cardiac damage pyroptosis BALB/c mice 


Authors’ Contributions

Zuowei Pei designed this study; Hongyang Liu, Guang Yang, and Yue Zhao helped in performing experiments; Zuowei Pei and Yan Sun analyzed data and interpreted the results of experiments; Lipeng Guo and Ying Zhang prepared figures; Hongyang Liu drafted the manuscript. All authors read and approved the final manuscript.

Funding Information

This work was finally supported by the Posterdoctor Foundation of Liaoning Province, China (No. 194008).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gaieski, D.F., J.M. Edwards, M.J. Kallan, and B.G. Carr. 2013. Benchmarking the incidence and mortality of severe sepsis in the United States. Critical Care Medicine 41: 1167–1174.CrossRefGoogle Scholar
  2. 2.
    Kaukonen, K.M., M. Bailey, D. Pilcher, D.J. Cooper, and R. Bellomo. 2015. Systemic inflammatory response syndrome criteria in defining severe sepsis. The New England Journal of Medicine 372: 1629–1638.CrossRefGoogle Scholar
  3. 3.
    Gao, Y.L., M.M. Yu, S.T. Shou, Y. Yao, Y.C. Liu, L.J. Wang, B. Lu, and Y.F. Chai. 2016. Tuftsin prevents the negative immunoregulation of neuropilin-1highCD4+CD25+regulatory T cells and improves survival rate in septic mice. Oncotarget 7: 81791–81805.Google Scholar
  4. 4.
    Cimolai, M.C., S. Alvarez, C. Bode, and H. Bugger. 2015. Mitochondrial mechanisms in septic cardiomyopathy. International Journal of Molecular Sciences 16: 17763–17778.CrossRefGoogle Scholar
  5. 5.
    Rudiger, A., and M. Singer. 2007. Mechanisms of sepsis-induced cardiac dysfunction. Critical Care Medicine 35: 1599–1608.CrossRefGoogle Scholar
  6. 6.
    Zanotti-Cavazzoni, S.L., and S.M. Hollenberg. 2009. Cardiac dysfunction in severe sepsis and septic shock. Current Opinion in Critical Care 15: 392–397.CrossRefGoogle Scholar
  7. 7.
    Levine, B., and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell 132: 27–42.CrossRefGoogle Scholar
  8. 8.
    Mizushima, N., B. Levine, A.M. Cuervo, and D.J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075.CrossRefGoogle Scholar
  9. 9.
    Pu, Q., C. Gan, R. Li, Y. Li, S. Tan, X. Li, Y. Wei, L. Lan, X. Deng, H. Liang, F. Ma, and M. Wu. 2017. Atg7 deficiency intensifies inflammasome activation and pyroptosis in Pseudomonas sepsis. Journal of Immunology 198: 3205–3213.CrossRefGoogle Scholar
  10. 10.
    Pfalzgraff, A., L. Heinbockel, Q. Su, K. Brandenburg, and G. Weindl. 2017. Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses. Biochemical Pharmacology 140: 64–72.CrossRefGoogle Scholar
  11. 11.
    Aglietti, R.A., and E.C. Dueber. 2017. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends in Immunology 38: 261–271.CrossRefGoogle Scholar
  12. 12.
    Esquerdo, K.F., N.K. Sharma, M.K.C. Brunialti, G.L. Baggio-Zappia, M. Assunção, L.C.P. Azevedo, A.T. Bafi, and R. Salomao. 2017. Inflammasome gene profile is modulated in septic patients, with a greater magnitude in non-survivors. Clinical and Experimental Immunology 189: 232–240.CrossRefGoogle Scholar
  13. 13.
    Gali-Muhtasib, H., A. Roessner, and R. Schneider-Stock. 2006. Thymoquinone: A promising anti-cancer drug from natural sources. The International Journal of Biochemistry & Cell Biology 8: 1249–1253.CrossRefGoogle Scholar
  14. 14.
    Xu, J., L. Zhu, H. Liu, M. Li, Y. Liu, F. Yang, and Z. Pei. 2018. Thymoquinone reduces cardiac damage caused by hypercholesterolemia in apolipoprotein E-deficient mice. Lipids in Health and Disease 17: 173.CrossRefGoogle Scholar
  15. 15.
    Pei, Zuowei, Jiahui Hu, Qianru Bai, Baiting Liu, Cheng Dong, Hainiang Liu, Rongmei Na, and Yu. Qin. 2018. Thymoquinone protects against cardiac damage from doxorubicin-induced heart failure in Sprague-Dawley rats. RSC Advances 8: 14633–14639.CrossRefGoogle Scholar
  16. 16.
    Rittirsch, D., M.S. Huber-Laang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4: 31–36.CrossRefGoogle Scholar
  17. 17.
    Chu, M., Y. Gao, Y. Zhang, B. Zhou, B. Wu, J. Yao, and D. Xu. 2015. The role of speckle tracking echocardiography in assessment of lipopolysaccharide-induced myocardial dysfunction in mice. Journal of Thoracic Disease 12: 2253–2261.CrossRefGoogle Scholar
  18. 18.
    Flierl, M.A., D. Rittirsch, M.S. Huber-Lang, J.V. Sarma, and P.A. Ward. 2008. Molecular events in the cardiomyopathy of sepsis. Molecular Medicine 14: 327–336.Google Scholar
  19. 19.
    Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253: 1190–1200.CrossRefGoogle Scholar
  20. 20.
    Zhang, J., P. Zhao, N. Quan, L. Wang, X. Chen, C. Cates, T. Rousselle, and J. Li. 2017. The endotoxemia cardiac dysfunction is attenuated by AMPK/mTOR signaling pathway regulating autophagy. Biochemical and Biophysical Research Communications 492: 520–527.CrossRefGoogle Scholar
  21. 21.
    Zilinyi, R., A. Czompa, A. Czegledi, A. Gajtko, D. Pituk, I. Lekli, and A. Tosaki. 2018. The Cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: The role of autophagy. Molecules 23: E1184.CrossRefGoogle Scholar
  22. 22.
    Zheng, Y., S. Gu, X. Li, J. Tan, S. Liu, Y. Jiang, C. Zhang, L. Gao, and H.T. Yang. 2017. Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death & Disease 8: e2577.CrossRefGoogle Scholar
  23. 23.
    Su, Y., Y. Qu, F. Zhao, H. Li, D. Mu, and X. Li. 2015. Regulation of autophagy by the nuclear factor κB signaling pathway in the hippocampus of rats with sepsis. Journal of Neuroinflammation 12: 116.CrossRefGoogle Scholar
  24. 24.
    Aziz, M., A. Jacob, and P. Wang. 2014. Revisiting caspases in sepsis. Cell Death & Disease 5: e1526.CrossRefGoogle Scholar
  25. 25.
    Vande Walle, L., and M. Lamkanfi. 2016. Pyroptosis. Current Biology 26: R568–R572.CrossRefGoogle Scholar
  26. 26.
    Yang, Y., G. Jiang, P. Zhang, and J. Fan. 2015. Programmed cell death and its role in inflammation. Military Medical Research 2: 12.CrossRefGoogle Scholar
  27. 27.
    Man, S.M., R. Karki, and T.D. Kanneganti. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunological Reviews 277: 61–75.CrossRefGoogle Scholar
  28. 28.
    Lee, S., K. Nakahira, J. Dalli, I.I. Siempos, P.C. Norris, R.A. Colas, J.S. Moon, M. Shinohara, S. Hisata, J.A. Howrylak, G.Y. Suh, S.W. Ryter, C.N. Serhan, and A.M.K. Choi. 2017. NLRP3 Inflammasome deficiency protects against microbial sepsis via increased Lipoxin B4 synthesis. American Journal of Respiratory and Critical Care Medicine 196: 713–726.CrossRefGoogle Scholar
  29. 29.
    Wu, Y., J. Ren, B. Zhou, C. Ding, J. Chen, G. Wang, G. Gu, X. Wu, S. Liu, D. Hu, and J. Li. 2015. Gene silencing of non-obese diabetic receptor family (NLRP3) protects against the sepsis-induced hyper-bile acidaemia in a rat model. Clinical and Experimental Immunology 179: 277–293.CrossRefGoogle Scholar
  30. 30.
    Bordon, Y. 2012. Mucosal immunology: Inflammasomes induce sepsis following community breakdown. Nature Reviews, Immunology 12: 400–401.CrossRefGoogle Scholar
  31. 31.
    Gonçalves, A.C., L.S. Ferreira, F.A. Manente, C.M.Q.G. de Faria, M.C. Polesi, C.R. de Andrade, D.S. Zamboni, and I.Z. Carlos. 2017. The NLRP3 inflammasome contributes to host protection during Sporothrix schenckii infection. Immunology 151: 154–166.CrossRefGoogle Scholar
  32. 32.
    Borges, P.V., K.H. Moret, N.M. Raghavendra, T.E. Maramaldo Costa, A.P. Monteiro, A.B. Carneiro, P. Pacheco, J.R. Temerozo, D.C. Bou-Habib, M. das Graças Henriques, and C. Penido. 2017. Protective effect of gedunin on TLR-mediated inflammation by modulation of inflammasome activation and cytokine production: Evidence of a multitarget compound. Pharmacological Research 115: 65–77.CrossRefGoogle Scholar
  33. 33.
    Liston, A., and S.L. Masters. 2017. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology 17: 208–214.CrossRefGoogle Scholar
  34. 34.
    Zhang, Y., Z.W. Zhou, H. Jin, C. Hu, Z.X. He, Z.L. Yu, K.M. Ko, T. Yang, X. Zhang, S.Y. Pan, and S.F. Zhou. 2015. Schisandrin B inhibits cell growth and induces cellular apoptosis and autophagy in mouse hepatocytes and macrophages: Implications for its hepatotoxicity. Drug Design, Development and Therapy 9: 2001–2027.Google Scholar
  35. 35.
    Xu, S., L. Wu, Q. Zhang, J. Feng, S. Li, J. Li, T. Liu, W. Mo, W. Wang, X. Lu, Q. Yu, K. Chen, Y. Xia, J. Lu, L. Xu, Y. Zhou, X. Fan, and C. Guo. 2017. Pretreatment with propylene glycol alginate sodium sulfate ameliorated concanavalin A-induced liver injury by regulating the PI3K/Akt pathway in mice. Life Sciences 185: 103–113.CrossRefGoogle Scholar
  36. 36.
    Li, Z., F. Zhao, Y. Cao, J. Zhang, P. Shi, X. Sun, F. Zhang, and L. Tong. 2018. DHA attenuates hepatic ischemia reperfusion injury by inhibiting pyroptosis and activating PI3K/Akt pathway. European Journal of Pharmacology 835: 1–10.CrossRefGoogle Scholar
  37. 37.
    Kakihara, Y., T. Ito, M. Nakahara, K. Yamaguchi, and T. Yasuda. 2016. Sepsis-induced myocardial dysfunction: Pathophysiology and treatment. Journal of Intensive Care 4: 22.CrossRefGoogle Scholar
  38. 38.
    Pfeiffer, D., E. Roßmanith, I. Lang, and D. Falkenhagen. 2017. miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an in vitro sepsis model. PLoS One 29: e0179850.CrossRefGoogle Scholar
  39. 39.
    Liu, Y., R. Liao, Z. Qiang, and C. Zhang. 2017. Pro-inflammatory cytokine-driven PI3K/Akt/Sp1 signalling and H2S production facilitates the pathogenesis of severe acute pancreatitis. Bioscience Reports 37 (2): BSR20160483. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongyang Liu
    • 1
  • Yan Sun
    • 2
  • Ying Zhang
    • 3
  • Guang Yang
    • 1
  • Lipeng Guo
    • 4
  • Yue Zhao
    • 5
  • Zuowei Pei
    • 6
    Email author
  1. 1.Department of Heart Intensive Care UnitThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
  2. 2.Department of CardiologyZhejiang Rongjun HospitalJiaxingChina
  3. 3.Department of CardiologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
  4. 4.Department of CardiologyDalian Third People’s Hospital Affiliated to Dalian Medical UniversityDalianChina
  5. 5.Graduate school of Dalian Medical UniversityDalianChina
  6. 6.Department of CardiologyAffiliated Zhongshan Hospital of Dalian UniversityDalianChina

Personalised recommendations