Advertisement

Inflammation

pp 1–10 | Cite as

Protective Effects of Sweroside on IL-1β-Induced Inflammation in Rat Articular Chondrocytes Through Suppression of NF-κB and mTORC1 Signaling Pathway

  • Rui Zhang
  • Chao-min Wang
  • Hua-ji Jiang
  • Xing-gui Tian
  • WenJun Li
  • Wei Liang
  • Jianhua Yang
  • Chunlan Zhong
  • Yuhui Chen
  • Tao Li
ORIGINAL ARTICLE
  • 107 Downloads

Abstract

Sweroside (SW), as a bioactive herbal ingredient, has anti-inflammatory effects. Protective effects of SW on IL-1β-stimulated articular chondrocytes, however, has not been fully understood. This study was to explore the anti-inflammatory effects and further to investigate the possible mechanism underlying SW effect on IL-1β-stimulated rat articular chondrocytes. Rat articular chondrocytes were cultured with or without SW for 1 h, and then stimulated with IL-1β for 24 h. ELISA analysis was used to measure the production of NO and PGE2. Western blot was to detect the expression of iNOS and COX-2. Furthermore, the mRNA expression of MMP-1, MMP3, MMP13, and ADAMTS-5 were measured by q-PCR. These results demonstrated that SW significantly inhibited IL-1β-induced NO and PGE2 production, as well as MMP-1, MMP3, MMP13, and ADAMTS-5 mRNA expression. Moreover, SW also suppressed IL-1β-induced NF-κB activation and iκ-B degradation, S6K1 and S6 phosphorylation. In conclusion, these results strongly demonstrated that the anti-inflammatory activity of SW is in part mediated by suppressing NF-κB and mTORC1 signaling, which was expected to be a promising drug target of osteoarthritis therapy.

KEY WORDS

Sweroside Articular chondrocytes IL-1β NF-κB mTORC1 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Ehrlich, G.E. 1975. Osteoarthritis beginning with inflammation. Definitions and correlations. JAMA 232: 157–159.CrossRefGoogle Scholar
  2. 2.
    Pelletier, J.P., J. Martel-Pelletier, and S.B. Abramson. 2001. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis and Rheumatism 44: 1237–1247.CrossRefGoogle Scholar
  3. 3.
    Benito, M.J., D.J. Veale, O. FitzGerald, W.B. van den Berg, and B. Bresnihan. 2005. Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic Diseases 64: 1263–1267.CrossRefGoogle Scholar
  4. 4.
    Kobayashi, M., G.R. Squires, A. Mousa, M. Tanzer, D.J. Zukor, J. Antoniou, U. Feige, and A.R. Poole. 2005. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis and Rheumatism 52: 128–135.CrossRefGoogle Scholar
  5. 5.
    Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, and H. Fahmi. 2011. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology 7: 33–42.CrossRefGoogle Scholar
  6. 6.
    Feng, Z., W. Zheng, X. Li, J. Lin, C. Xie, H. Li, L. Cheng, A. Wu, and W. Ni. 2017. Cryptotanshinone protects against IL-1beta-induced inflammation in human osteoarthritis chondrocytes and ameliorates the progression of osteoarthritis in mice. International Immunopharmacology 50: 161–167.CrossRefGoogle Scholar
  7. 7.
    Guerne, P.A., B.L. Zuraw, J.H. Vaughan, D.A. Carson, and M. Lotz. 1989. Synovium as a source of interleukin 6 in vitro. Contribution to local and systemic manifestations of arthritis. The Journal of Clinical Investigation 83: 585–592.CrossRefGoogle Scholar
  8. 8.
    Yang, G., H.J. Im, and J.H. Wang. 2005. Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene 363: 166–172.CrossRefGoogle Scholar
  9. 9.
    Amin, A.R., M. Dave, M. Attur, and S.B. Abramson. 2000. COX-2, NO, and cartilage damage and repair. Current Rheumatology Reports 2: 447–453.CrossRefGoogle Scholar
  10. 10.
    Zheng, W., Z. Feng, S. You, H. Zhang, Z. Tao, Q. Wang, H. Chen, and Y. Wu. 2017. Fisetin inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. International Immunopharmacology 45: 135–147.CrossRefGoogle Scholar
  11. 11.
    Park, J.W., Y.P. Yun, K. Park, J.Y. Lee, H.J. Kim, S.E. Kim, and H.R. Song. 2016. Ibuprofen-loaded porous microspheres suppressed the progression of monosodium iodoacetate-induced osteoarthritis in a rat model. Colloids and Surfaces. B, Biointerfaces 147: 265–273.CrossRefGoogle Scholar
  12. 12.
    Koenders, M.I., R.J. Marijnissen, I. Devesa, E. Lubberts, L.A. Joosten, J. Roth, P.L. van Lent, F.A. van de Loo, and W.B. van den Berg. 2011. Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1beta, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: rationale for combination treatment during arthritis. Arthritis and Rheumatism 63: 2329–2339.CrossRefGoogle Scholar
  13. 13.
    Zheng, G., Y. Zhan, Q. Tang, T. Chen, F. Zheng, H. Wang, J. Wang, D. Wu, X. Li, Y. Zhou, X. Wang, Y. Wu, Y. Zhou, H. Xu, N. Tian, and X. Zhang. 2018. Monascin inhibits IL-1beta induced catabolism in mouse chondrocytes and ameliorates murine osteoarthritis. Food & Function 9: 1454–1464.CrossRefGoogle Scholar
  14. 14.
    Zheng, W., C. Chen, C. Zhang, L. Cai, and H. Chen. 2018. The protective effect of phloretin in osteoarthritis: an in vitro and in vivo study. Food & Function 9: 263–278.CrossRefGoogle Scholar
  15. 15.
    Tan, R.X., J.L. Wolfender, W.G. Ma, L.X. Zhang, and K. Hostettmann. 1996. Secoiridoids and antifungal aromatic acids from Gentiana algida. Phytochemistry 41: 111–116.CrossRefGoogle Scholar
  16. 16.
    Hase, K., J. Li, P. Basnet, Q. Xiong, S. Takamura, T. Namba, and S. Kadota. 1997. Hepatoprotective principles of Swertia japonica Makino on D-galactosamine/lipopolysaccharide-induced liver injury in mice. Chemical and Pharmaceutical Bulletin (Tokyo) 45: 1823–1827.CrossRefGoogle Scholar
  17. 17.
    Mahendran, G., G. Thamotharan, S. Sengottuvelu, and B.V. Narmatha. 2014. RETRACTED: Anti-diabetic activity of Swertia corymbosa (Griseb.) Wight ex C.B. Clarke aerial parts extract in streptozotocin induced diabetic rats. Journal of Ethnopharmacology 151: 1175–1183.CrossRefGoogle Scholar
  18. 18.
    He, Y.M., S. Zhu, Y.W. Ge, K. Kazuma, K. Zou, S.Q. Cai, and K. Komatsu. 2015. The anti-inflammatory secoiridoid glycosides from gentianae scabrae radix: the root and rhizome of Gentiana scabra. Journal of Natural Medicines 69: 303–312.CrossRefGoogle Scholar
  19. 19.
    Jeong, Y.T., S.C. Jeong, J.S. Hwang, and J.H. Kim. 2015. Modulation effects of sweroside isolated from the Lonicera japonica on melanin synthesis. Chemico-Biological Interactions 238: 33–39.CrossRefGoogle Scholar
  20. 20.
    Yang, Q.L., F. Yang, J.T. Gong, X.W. Tang, G.Y. Wang, Z.T. Wang, and L. Yang. 2016. Sweroside ameliorates alpha-naphthylisothiocyanate-induced cholestatic liver injury in mice by regulating bile acids and suppressing pro-inflammatory responses. Acta Pharmacologica Sinica 37: 1218–1228.CrossRefGoogle Scholar
  21. 21.
    Han, X.L., J.D. Li, W.L. Wang, C. Yang, and Z.Y. Li. 2017. Sweroside eradicated leukemia cells and attenuated pathogenic processes in mice by inducing apoptosis. Biomedicine & Pharmacotherapy 95: 477–486.CrossRefGoogle Scholar
  22. 22.
    Wang, C., L. Zeng, T. Zhang, J. Liu, and W. Wang. 2016. Tenuigenin Prevents IL-1beta-induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing PI3K/AKT/NF-kappaB Signaling Pathway. Inflammation 39: 807–812.CrossRefGoogle Scholar
  23. 23.
    Chen, W.P., Y. Xiong, P.F. Hu, J.P. Bao, and L.D. Wu. 2015. Baicalein Inhibits MMPs Expression via a MAPK-Dependent Mechanism in Chondrocytes. Cellular Physiology and Biochemistry 36: 325–333.CrossRefGoogle Scholar
  24. 24.
    Ouyang, J., H. Jiang, H. Fang, W. Cui, and D. Cai. 2017. Isoimperatorin ameliorates osteoarthritis by downregulating the mammalian target of rapamycin C1 signaling pathway. Molecular Medicine Reports 16: 9636–9644.CrossRefGoogle Scholar
  25. 25.
    Daheshia, M., and J.Q. Yao. 2008. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. The Journal of Rheumatology 35: 2306–2312.CrossRefGoogle Scholar
  26. 26.
    Studer, R., D. Jaffurs, M. Stefanovic-Racic, P.D. Robbins, and C.H. Evans. 1999. Nitric oxide in osteoarthritis. Osteoarthritis and Cartilage 7: 377–379.CrossRefGoogle Scholar
  27. 27.
    Futani, H., A. Okayama, K. Matsui, S. Kashiwamura, T. Sasaki, T. Hada, K. Nakanishi, H. Tateishi, S. Maruo, and H. Okamura. 2002. Relation between interleukin-18 and PGE2 in synovial fluid of osteoarthritis: A potential therapeutic target of cartilage degradation. Journal of Immunotherapy 25: S61–S64.CrossRefGoogle Scholar
  28. 28.
    Koskinen, A., K. Vuolteenaho, R. Nieminen, T. Moilanen, and E. Moilanen. 2011. Leptin enhances MMP-l, MMP-3 and MMP-13 production in human osteoarthritic cartilage and correlates with MMP-1 and MMP-3 in synovial fluid from OA patients. Clinical and Experimental Rheumatology-Incl Supplements 29: 57.Google Scholar
  29. 29.
    Baker, R.G., M.S. Hayden, and S. Ghosh. 2011. NF-kappaB, inflammation, and metabolic disease. Cell Metabolism 13: 11–22.CrossRefGoogle Scholar
  30. 30.
    Lawrence, T., and C. Fong. 2010. The resolution of inflammation: anti-inflammatory roles for NF-kappaB. The International Journal of Biochemistry & Cell Biology 42: 519–523.CrossRefGoogle Scholar
  31. 31.
    Roman-Blas, J.A., and S.A. Jimenez. 2006. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage 14: 839–848.CrossRefGoogle Scholar
  32. 32.
    Jacques C, Gosset M, Berenbaum F, Gabay C (2006) The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam Horm 74:371-403Google Scholar
  33. 33.
    Jeong, J.W., H.H. Lee, E.O. Choi, K.W. Lee, K.Y. Kim, S.G. Kim, S.H. Hong, G.Y. Kim, C. Park, H.K. Kim, Y.W. Choi, and Y.H. Choi. 2015. Schisandrae Fructus Inhibits IL-1beta-Induced Matrix Metalloproteinases and Inflammatory Mediators Production in SW1353 Human Chondrocytes by Suppressing NF-kappaB and MAPK Activation. Drug Development Research 76: 474–483.CrossRefGoogle Scholar
  34. 34.
    De Luna-Preitschopf, A, Zwickl, H, Nehrer, S, Hengstschlager, M, Mikula, M. 2017. Rapamycin Maintains the Chondrocytic Phenotype and Interferes with Inflammatory Cytokine Induced Processes. International Journal of Molecular Sciences 18.CrossRefGoogle Scholar
  35. 35.
    Huang, M.J., L. Wang, D.D. Jin, Z.M. Zhang, T.Y. Chen, C.H. Jia, Y. Wang, X.C. Zhen, B. Huang, B. Yan, Y.H. Chen, S.F. Li, J.C. Yang, Y.F. Dai, and X.C. Bai. 2014. Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice. Annals of the Rheumatic Diseases 73: 1719–1727.CrossRefGoogle Scholar
  36. 36.
    Zhang, H., H. Wang, C. Zeng, B. Yan, J. Ouyang, X. Liu, Q. Sun, C. Zhao, H. Fang, J. Pan, D. Xie, J. Yang, T. Zhang, X. Bai, and D. Cai. 2017. mTORC1 activation downregulates FGFR3 and PTH/PTHrP receptor in articular chondrocytes to initiate osteoarthritis. Osteoarthritis and Cartilage 25: 952–963.CrossRefGoogle Scholar
  37. 37.
    Lopez, D.F.P., M.K. Lotz, F.J. Blanco, and B. Carames. 2015. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis & Rhematology 67: 966–976.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rui Zhang
    • 1
  • Chao-min Wang
    • 2
  • Hua-ji Jiang
    • 3
  • Xing-gui Tian
    • 4
  • WenJun Li
    • 3
  • Wei Liang
    • 3
  • Jianhua Yang
    • 3
  • Chunlan Zhong
    • 3
  • Yuhui Chen
    • 5
  • Tao Li
    • 5
  1. 1.Department of Cardiology (Cardiac Rehabilitation)The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
  2. 2.Department of Trauma Treatment CenterThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
  3. 3.Department of PainYue Bei People’s HospitalShaoguanChina
  4. 4.Department of OrthopedicsThe Affiliated Hospital of Southwestern Medical UniversityLuZhouChina
  5. 5.Department of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina

Personalised recommendations