Advertisement

Inflammation

pp 1–17 | Cite as

IRF-1 Intervention in the Classical ROS-Dependent Release of NETs during LPS-Induced Acute Lung Injury in Mice

  • Shuai Liu
  • Yinyan Yue
  • Pinhua Pan
  • Lemeng Zhang
  • Xiaoli Su
  • Haitao Li
  • Haosi Li
  • Yi Li
  • Minhui Dai
  • Qian Li
  • Zhi Mao
ORIGINAL ARTICLE

Abstract

Previously, we demonstrated that neutrophil extracellular traps (NETs) play an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism is unclear. In this study, we showed that knockout of interferon regulatory factor 1 (IRF-1) in mice strongly attenuated the generation of NETs and reactive oxygen species (ROS) production in neutrophils from bronchoalveolar lavage fluid and alleviated LPS-induced lung injury and systemic inflammation. Our in vitro experiments demonstrated that LPS-stimulated platelets induce NET release through two distinct processes: an ROS-independent early/rapid NETosis and a later ROS-dependent classical NETosis. Notably, the classical ROS-dependent pathway plays a dominant role in the generation of NETs. Furthermore, we showed that IRF-1 knockout does not affect the formation of NETs in early/rapid NETosis, but significantly attenuates ROS production and the generation of NETs in classical NETosis, which determines the total levels of NETs released by LPS-stimulated platelets. In conclusion, IRF-1 deficiency plays a key role in moderating the excessive NETs formed via ROS in the classical pathway and retaining the protective role of the low-NET levels generated in early/rapid NETosis, which may serve as a novel target in acute lung injury/acute respiratory distress syndrome.

KEY WORDS

acute lung injury interferon regulatory factor-1 neutrophil extracellular traps reactive oxygen species lipopolysaccharide 

Notes

Author Contributions

S.L. performed the experiments and drafted the manuscript; S.L., Y.Y., Y.L., Z.M., and H.L. analyzed the data; S.L. and X.S. interpreted the experimental results; L.Z. verified the pathological results; S.L., H.L., Q.L., and M.D. prepared the figures; P.P. conceived and designed the research; P.P. and L.Z. edited and revised the manuscript; P.P. approved the final version of manuscript. All authors read and approved the final manuscript.

Funding Information

This work was supported by the National Natural Science Foundation of China (nos. 81770080 and 81470266).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no competing interests.

References

  1. 1.
    Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of Clinical Investigation 122 (8): 2731–2740.CrossRefGoogle Scholar
  2. 2.
    Modrykamien, A.M., and P. Gupta. 2015. The acute respiratory distress syndrome. Proceedings (Baylor University Medical Center) 28 (2): 163–171.CrossRefGoogle Scholar
  3. 3.
    Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. Van Haren, A. Larsson, and D.F. Mcauley. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.CrossRefGoogle Scholar
  4. 4.
    Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (3): L379–L399.CrossRefGoogle Scholar
  5. 5.
    Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.CrossRefGoogle Scholar
  6. 6.
    Perl, M., J. Lomas-Neira, F. Venet, C.S. Chung, and A. Ayala. 2011. Pathogenesis of indirect (secondary) acute lung injury. Expert Review of Respiratory Medicine 5 (1): 115–126.CrossRefGoogle Scholar
  7. 7.
    Welbourn, C.R., and Y. Young. 1992. Endotoxin, septic shock and acute lung injury: Neutrophils, macrophages and inflammatory mediators. The British Journal of Surgery 79 (10): 998–1003.CrossRefGoogle Scholar
  8. 8.
    Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303 (5663): 1532–1535.CrossRefGoogle Scholar
  9. 9.
    Liu, S., X. Su, P. Pan, L. Zhang, Y. Hu, H. Tan, D. Wu, et al. 2016. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Scientific Reports 6: 37252.CrossRefGoogle Scholar
  10. 10.
    Fuchs, T.A., U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, Y. Weinrauch, V. Brinkmann, and A. Zychlinsky. 2007. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology 176 (2): 231–241.CrossRefGoogle Scholar
  11. 11.
    Pilsczek, F.H., D. Salina, K.K. Poon, C. Fahey, B.G. Yipp, C.D. Sibley, S.M. Robbins, et al. 2010. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. Journal of Immunology 185 (12): 7413–7425.CrossRefGoogle Scholar
  12. 12.
    Zhang, L., J.S. Cardinal, P. Pan, B.R. Rosborough, Y. Chang, W. Yan, H. Huang, T.R. Billiar, M.R. Rosengart, and A. Tsung. 2012. Splenocyte apoptosis and autophagy is mediated by interferon regulatory factor 1 during murine endotoxemia. Shock 37 (5): 511–517.CrossRefGoogle Scholar
  13. 13.
    Zhang, L., J.S. Cardinal, R. Bahar, J. Evankovich, H. Huang, G. Nace, T.R. Billiar, M.R. Rosengart, P. Pan, and A. Tsung. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.CrossRefGoogle Scholar
  14. 14.
    Pan, P.H., J. Cardinal, M.L. Li, C.P. Hu, and A. Tsung. 2013. Interferon regulatory factor-1 mediates the release of high mobility group box-1 in endotoxemia in mice. Chinese Medical Journal 126 (5): 918–924.PubMedGoogle Scholar
  15. 15.
    Huang, H., S. Tohme, A.B. Al-Khafaji, S. Tai, P. Loughran, L. Chen, S. Wang, et al. 2015. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62 (2): 600–614.CrossRefGoogle Scholar
  16. 16.
    Lee, H.J., Y.K. Oh, M. Rhee, J.Y. Lim, J.Y. Hwang, Y.S. Park, Y. Kwon, K.H. Choi, I. Jo, S.I. Park, B. Gao, and W.H. Kim. 2007. The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN. Journal of Molecular Biology 369 (4): 967–984.CrossRefGoogle Scholar
  17. 17.
    Remijsen, Q., Berghe T. Vanden, E. Wirawan, B. Asselbergh, E. Parthoens, R. De Rycke, S. Noppen, M. Delforge, J. Willems, and P. Vandenabeele. 2011. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research 21 (2): 290–304.CrossRefGoogle Scholar
  18. 18.
    Wu, D., P. Pan, X. Su, L. Zhang, Q. Qin, H. Tan, L. Huang, and Y. Li. 2016. Interferon regulatory Factor-1 mediates alveolar macrophage pyroptosis during LPS-induced acute lung injury in mice. Shock 46 (3): 329–338.CrossRefGoogle Scholar
  19. 19.
    Liu, D.D., S.J. Kao, and H.I. Chen. 2008. N-acetylcysteine attenuates acute lung injury induced by fat embolism. Critical Care Medicine 36 (2): 565–571.CrossRefGoogle Scholar
  20. 20.
    Barth, C.R., G.A. Funchal, C. Luft, J.R. de Oliveira, B.N. Porto, and M.V. Donadio. 2016. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. European Journal of Immunology 46 (4): 964–970.CrossRefGoogle Scholar
  21. 21.
    McGuigan, R.M., P. Mullenix, L.L. Norlund, D. Ward, M. Walts, and K. Azarow. 2003. Acute lung injury using oleic acid in the laboratory rat: Establishment of a working model and evidence against free radicals in the acute phase. Current Surgery 60 (4): 412–417.CrossRefGoogle Scholar
  22. 22.
    Caudrillier, A., K. Kessenbrock, B.M. Gilliss, J.X. Nguyen, M.B. Marques, M. Monestier, P. Toy, Z. Werb, and M.R. Looney. 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. The Journal of Clinical Investigation 122 (7): 2661–2671.CrossRefGoogle Scholar
  23. 23.
    Parker, H., M. Dragunow, M.B. Hampton, A.J. Kettle, and C.C. Winterbourn. 2012. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology 92 (4): 841–849.CrossRefGoogle Scholar
  24. 24.
    Pieterse, E., N. Rother, C. Yanginlar, L.B. Hilbrands, and J. van der Vlag. 2016. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Frontiers in Immunology 7: 484.CrossRefGoogle Scholar
  25. 25.
    Clark, S.R., A.C. Ma, S.A. Tavener, B. McDonald, Z. Goodarzi, M.M. Kelly, K.D. Patel, S. Chakrabarti, E. McAvoy, G.D. Sinclair, E.M. Keys, E. Allen-Vercoe, R. DeVinney, C.J. Doig, F.H.Y. Green, and P. Kubes. 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine 13 (4): 463–469.CrossRefGoogle Scholar
  26. 26.
    McDonald, B., R. Urrutia, B.G. Yipp, C.N. Jenne, and P. Kubes. 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host & Microbe 12 (3): 324–333.CrossRefGoogle Scholar
  27. 27.
    Fan, J., Y. Li, R.M. Levy, J.J. Fan, D.J. Hackam, Y. Vodovotz, H. Yang, K.J. Tracey, T.R. Billiar, and M.A. Wilson. 2007. Hemorrhagic shock induces NAD (P) H oxidase activation in neutrophils: Role of HMGB1-TLR4 signaling. Journal of Immunology 178 (10): 6573–6580.CrossRefGoogle Scholar
  28. 28.
    Maugeri, N., L. Campana, M. Gavina, C. Covino, M. De Metrio, C. Panciroli, L. Maiuri, et al. 2014. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Journal of Thrombosis and Haemostasis 12 (12): 2074–2088.CrossRefGoogle Scholar
  29. 29.
    Merza, M., H. Hartman, M. Rahman, R. Hwaiz, E. Zhang, E. Renstrom, L. Luo, M. Morgelin, S. Regner, and H. Thorlacius. 2015. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 149 (7): 1920–1931.e1928.CrossRefGoogle Scholar
  30. 30.
    Rochael, N.C., A.B. Guimaraes-Costa, M.T. Nascimento, T.S. DeSouza-Vieira, M.P. Oliveira, E. Souza LF Garcia, M.F. Oliveira, and E.M. Saraiva. 2015. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Scientific Reports 5: 18302.CrossRefGoogle Scholar
  31. 31.
    Saffarzadeh, M., C. Juenemann, M.A. Queisser, G. Lochnit, G. Barreto, S.P. Galuska, J. Lohmeyer, and K.T. Preissner. 2012. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS One 7 (2): e32366.CrossRefGoogle Scholar
  32. 32.
    Carestia, A., T. Kaufman, L. Rivadeneyra, V.I. Landoni, R.G. Pozner, S. Negrotto, L.P. D'Atri, R.M. Gomez, and M. Schattner. 2016. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. Journal of Leukocyte Biology 99 (1): 153–162.CrossRefGoogle Scholar
  33. 33.
    Tadie, J.M., H.B. Bae, S. Jiang, D.W. Park, C.P. Bell, H. Yang, J.F. Pittet, K. Tracey, V.J. Thannickal, and E. Abraham. 2013. HMGB1 promotes neutrophil extracellular trap formation through interactions with toll-like receptor 4. American Journal of Physiology Lung Cellular and Molecular Physiology 304 (5): L342–L349.CrossRefGoogle Scholar
  34. 34.
    Rossaint, J., J.M. Herter, H. Van Aken, M. Napirei, Y. Doring, C. Weber, O. Soehnlein, and A. Zarbock. 2014. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123 (16): 2573–2584.CrossRefGoogle Scholar
  35. 35.
    Etulain, J., K. Martinod, S.L. Wong, S.M. Cifuni, M. Schattner, and D.D. Wagner. 2015. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126 (2): 242–246.CrossRefGoogle Scholar
  36. 36.
    Sreeramkumar, Vinatha, José M. Adrover, Ivan Ballesteros, Maria Isabel Cuartero, Jan Rossaint, Izaskun Bilbao, Maria Nácher, Christophe Pitaval, Irena Radovanovic, and Yoshinori Fukui. 2014. Neutrophils scan for activated platelets to initiate inflammation. Science 346 (6214): 1234–1238.CrossRefGoogle Scholar
  37. 37.
    Carestia, A., T. Kaufman, and M. Schattner. 2016. Platelets: New bricks in the building of neutrophil extracellular traps. Frontiers in Immunology 7: 271.CrossRefGoogle Scholar
  38. 38.
    Kroger, A., M. Koster, K. Schroeder, H. Hauser, and P.P. Mueller. 2002. Activities of IRF-1. Journal of Interferon & Cytokine Research 22 (1): 5–14.CrossRefGoogle Scholar
  39. 39.
    Fujita, T., J. Sakakibara, Y. Sudo, M. Miyamoto, Y. Kimura, and T. Taniguchi. 1988. Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. The EMBO Journal 7 (11): 3397–3405.CrossRefGoogle Scholar
  40. 40.
    Baas, T., J.K. Taubenberger, P.Y. Chong, P. Chui, and M.G. Katze. 2006. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. Journal of Interferon & Cytokine Research 26 (5): 309–317.CrossRefGoogle Scholar
  41. 41.
    Gao, J., M. Senthil, B. Ren, J. Yan, Q. Xing, J. Yu, L. Zhang, and J.H. Yim. 2010. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death and Differentiation 17 (4): 699–709.CrossRefGoogle Scholar
  42. 42.
    Lood, C., L.P. Blanco, M.M. Purmalek, C. Carmona-Rivera, S.S. De Ravin, C.K. Smith, H.L. Malech, J.A. Ledbetter, K.B. Elkon, and M.J. Kaplan. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature Medicine 22 (2): 146–153.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shuai Liu
    • 1
  • Yinyan Yue
    • 2
  • Pinhua Pan
    • 1
  • Lemeng Zhang
    • 3
  • Xiaoli Su
    • 1
  • Haitao Li
    • 1
  • Haosi Li
    • 1
  • Yi Li
    • 1
  • Minhui Dai
    • 1
  • Qian Li
    • 1
  • Zhi Mao
    • 1
  1. 1.Department of Respiratory and Critical Care Medicine (Department of Respiratory Medicine), Key cite of National Clincial Research Center for Respiratory Disease, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
  3. 3.Department of Thoracic Medicine, Hunan Cancer Hospital, Affiliated to Xiangya Medical SchoolCentral South UniversityChangshaChina

Personalised recommendations