Skip to main content

Advertisement

Log in

Anti-inflammatory Action of Metformin with Respect to CX3CL1/CX3CR1 Signaling in Human Placental Circulation in Normal-Glucose Versus High-Glucose Environments

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Upregulation of chemokine CX3CL1 and its receptor CX3CR1 occurs in the diabetic human placenta. Metformin, an insulin-sensitizing biguanide, is used in the therapy of diabetic pregnancy. By preventing the activation of NF-κB, metformin exhibits anti-inflammatory properties. We examined the influence of hyperglycemia (25 mmol/L glucose; HG group; N = 36) on metformin-mediated effects on CX3CL1 and TNF-α production by placental lobules perfused extracorporeally. Additionally, CX3CR1 expression and contents of CX3CR1, TNF-α receptor 1 (TNFR1), and NF-κB proteins in the placental tissue were evaluated. Placentae perfused under normoglycemia (5 mmol/L glucose; NG group; N = 36) served as the control. Metformin (2.5 and 5.0 mg/L; subgroups B and C) lowered the production of CX3CL1 and TNF-α in a dose-dependent and time-dependent manner. Hyperglycemia did not weaken the strength of these metformin effects. Moreover, CX3CL1 levels after perfusion with 5.0 mg/L metformin were reduced by 33.28 and 33.83% (at 120 and 150 min, respectively) in the HG-C subgroup versus 24.98 and 23.66% in the NG-C subgroup, which indicated an augmentation of the metformin action over time in hyperglycemia. CX3CR1 expression was significantly higher in the HG-B and HG-C subgroups compared to that in the NG-B and NG-C subgroups. Increased CX3CR1 protein content in the placental lysates was observed in subgroups B and C. The two higher metformin concentrations significantly decreased the levels of NF-κBp65 protein content in both groups. However, the decrease was significantly stronger in hyperglycemia. TNFR1 upregulation in the HG group was not affected by metformin. Further studies on metformin therapy during pregnancy are needed, including safety issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADAMs:

Desintegrin and metalloproteinases

ADAM-10:

Disintegrin and metalloproteinase (ADAM) 10

ADAM-17:

Desintegrin and metalloproteinase (ADAM) 17

Act:

Serine/threonine kinase Akt (protein kinase B, PKB)

ALT:

Alanine aminotransferase

AMPK:

Adenosine 5’- monophosphate(AMP)-activated protein kinase

AST:

Aspartate aminotransferase

BDNF:

Brain-derived neurotrophic factor

BLC:

Chemokine CXCL13

CCL4, CCL7, CCL14:

C-C motif chemokines: ligand 4, 7, and 14, respectively

CPU:

Central processing unit

CX3CL1:

C-X3-C motif chemokine ligand 1(fractalkine, neurotactin)

CX3CR1:

Chemokine CX3CL1 receptor 1

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked immunosorbent assay

ENA-78:

Chemokine CXCL5

FGF-4:

Fibroblast growth factor 4

G-CSF:

Granulocyte colony-stimulating factor

GDM:

Gestational diabetes mellitus

GIT:

glucose impaired tolerance, prediabetes

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HG:

High glucose

HUVECs:

Human umbilical vein endothelial cells

IFN-γ :

Interferon gamma

IKK:

IκB kinase complex

IL:

Interleukin

initCX3CL1:

Initial concentrations of CX3CL1

initTNF-α :

Initial concentrations of TNF-α

IP-10:

Chemokine CXCL10 (interferon gamma-induced protein 10; small inducible cytokine B10)

JAK/STAT:

Janus kinase/signal transducers and activators of transcription

LPS:

Lipopolysaccharide

MCP-1-3:

Monocyte chemotactic proteins

MDC:

Macrophage-derived chemokine

MIP-1α, MIP-1β, MIP-1δ :

Macrophage inflammatory proteins 1: alpha, beta, delta

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NG:

Normal glucose

NIK:

NF-κB-inducing kinase

NK:

Natural killer cells

PARC:

Pulmonary and activation-regulated chemokine (chemokine CCL18)

PDGF:

Platelet-derived growth factor

PDK1:

Pyruvate dehydrogenase kinase 1 (pyruvate dehydrogenase [acetyl-transferring] kinase isozyme 1)

PBS:

Phosphate-buffered saline

PI3-kinase:

Phosphoinositide 3-kinase (phosphatidylinositol-4,5-bisphosphate 3-kinase)

pO2 :

Oxygen partial pressure

RANTES:

Regulated on activation, normal T-cell expressed and secreted (chemokine CCL5)

SCF:

Stem cell factor

TARC:

Thymus- and activation-regulated chemokine (chemokine CCL17)

TGF-β :

Transforming growth factor β

TIMP-1-2:

Tissue inhibitors of metalloproteinases

TNFRSF1A:

Tumor necrosis factor receptor superfamily member 1A (tumor necrosis factor receptor 1; CD120a)

TNF-α, TNF-β :

Tumor necrosis factors: alpha, beta

TPO:

Thyroid peroxidase

VEGF:

Vascular endothelial growth factor

V/EVTI:

Vascular/extravascular tissular index

References

  1. Wedekind, L., and L. Belkacemi. 2016. Altered cytokine network in gestational diabetes mellitus affects maternal insulin and placental-fetal development. Journal of Diabetes and Its Complications 30: 1393–1400.

    Article  PubMed  Google Scholar 

  2. Desoye, G., and S. Hauguel-de Mouzon. 2007. The human placenta in gestational diabetes mellitus. The insulin and cytokine network. Diabetes Care 30 (Suppl 2): S120–S126 Erratum in: Diabetes Care 2007; 30: 3154.

    Article  CAS  PubMed  Google Scholar 

  3. Navarro-González, J.F., and C. Mora-Fernández. 2011. Inflammatory pathways. In Diabetes and the kidney. Contributions to nephrology, ed. K.N. Lai and S.C.W. Tang, vol. 170, 113–123. Basel: Karger.

    Chapter  Google Scholar 

  4. Dragomir, E., I. Manduteanu, M. Calin, A.M. Gan, D. Stan, R.R. Koenen, et al. 2008. High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells. Thrombosis and Haemostasis 100: 1155–1165.

    Article  CAS  PubMed  Google Scholar 

  5. Szukiewicz, D., J. Kochanowski, M. Pyzlak, G. Szewczyk, A. Stangret, and T.K. Mittal. 2013. Fractalkine (CX3CL1) and its receptor CX3CR1 may contribute to increased angiogenesis in diabetic placenta. Mediators of Inflammation 2013: 437576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yao, L., O. Herlea-Pana, J. Heuser-Baker, Y. Chen, and J. Barlic-Dicen. 2014. Roles of the chemokine system in development of obesity, insulin resistance, and cardiovascular disease. Journal of Immunology Research 2014: 11.

    Article  CAS  Google Scholar 

  7. Das, A., and S. Mukhopadhyay. 2011. The evil axis of obesity, inflammation and type-2 diabetes. Endocrine, Metabolic & Immune Disorders Drug Targets 11: 23–31.

    Article  CAS  Google Scholar 

  8. Apostolakis, S., and D. Spandidos. 2013. Chemokines and atherosclerosis: Focus on the CX3CL1/CX3CR1 pathway. Acta Pharmacologica Sinica 34: 1251–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bergmann, K., and G. Sypniewska. 2014. Secreted frizzled-related protein 4 (SFRP4) and fractalkine (CX3CL1)—Potential new biomarkers for β-cell dysfunction and diabetes. Clinical Biochemistry 47: 529–532.

    Article  CAS  PubMed  Google Scholar 

  10. Ebert, T., J. Hindricks, S. Kralisch, U. Lossner, B. Jessnitzer, J. Richter, et al. 2014. Serum levels of fractalkine are associated with markers of insulin resistance in gestational diabetes. Diabetic Medicine 31: 1014–1017.

    Article  CAS  PubMed  Google Scholar 

  11. Shah, R., S.M. O’Neill, C. Hinkle, J. Caughey, S. Stephan, E. Lynch, et al. 2015. Metabolic effects of CX3CR1 deficiency in diet-induced obese mice. PLoS One 10: e0138317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fiorentino, T.V., A. Prioletta, P. Zuo, and F. Folli. 2013. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Current Pharmaceutical Design 19: 5695–5703.

    Article  CAS  PubMed  Google Scholar 

  13. Mrizak, I., O. Grissa, B. Henault, M. Fekih, A. Bouslema, I. Boumaiza, et al. 2014. Placental infiltration of inflammatory markers in gestational diabetic women. General Physiology and Biophysics 33: 169–176.

    Article  CAS  PubMed  Google Scholar 

  14. Myatt, L. 1992. Control of vascular resistance in the human placenta. Placenta 13: 329–341.

    Article  CAS  PubMed  Google Scholar 

  15. Domingueti, C.P., L.M. Dusse, M.D. Carvalho, L.P. de Sousa, K.B. Gomes, and A.P. Fernandes. 2016. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and Its Complications 30: 738–745.

    Article  PubMed  Google Scholar 

  16. Kervancioglu Demirci, E., L.A. Salamonsen, and M. Gauster. 2016. The role of CX3CL1 in fetal-maternal interaction during human gestation. Cell Adhesion and Migration 10: 189–196.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Dimitriadis, E., G. Nie, N.J. Hannan, P. Paiva, and L.A. Salamonsen. 2010. Local regulation of implantation at the human fetal-maternal interface. International Journal of Developmental Biology 54: 313–322.

    Article  CAS  Google Scholar 

  18. Bowen, J.M., L. Chamley, M.D. Mitchell, and J.A. Keelan. 2002. Cytokines of the placenta and extra-placental membranes: Biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta 23: 239–256.

    Article  CAS  PubMed  Google Scholar 

  19. Taki, A., M. Abe, M. Komaki, K. Oku, S. Iseki, S. Mizutani, et al. 2012. Expression of angiogenesis-related factors and inflammatory cytokines in placenta and umbilical vessels in pregnancies with preeclampsia and chorioamnionitis/funisitis. Congenital Anomalies (Kyoto) 52: 97–103.

    Article  CAS  Google Scholar 

  20. Bazan, J.F., K.B. Bacon, G. Hardiman, W. Wang, K. Soo, D. Rossi, et al. 1997. A new class of membrane-bound chemokine with a CX3C motif. Nature 385: 640–644.

    Article  CAS  PubMed  Google Scholar 

  21. Pan, Y., C. Lloyd, H. Zhou, S. Dolich, J. Deeds, J.A. Gonzalo, et al. 1997. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387: 611–617 Erratum in: Nature 1997; 389 100.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, K.W., A. Vallon-Eberhard, E. Zigmond, J. Farache, E. Shezen, G. Shakhar, et al. 2011. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118: e156–e167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsumiya, T., K. Ota, T. Imaizumi, H. Yoshida, H. Kimura, and K. Satoh. 2010. Characterization of synergistic induction of CX3CL1/fractalkine by TNF-alpha and IFN-gamma in vascular endothelial cells: An essential role for TNF-alpha in post-transcriptional regulation of CX3CL1. Journal of Immunology 184: 4205–4214.

    Article  CAS  Google Scholar 

  24. Sindhu, S., N. Akhter, H. Arefanian, A.A. Al-Roub, S. Ali, A. Wilson, et al. 2017. Increased circulatory levels of fractalkine (CX3CL1) are associated with inflammatory chemokines and cytokines in individuals with type-2 diabetes. Journal of Diabetes and Metabolic Disorders 15: 15.

    Article  CAS  Google Scholar 

  25. Clark, A.K., A.A. Staniland, and M. Malcangio. 2011. Fractalkine/CX3CR1 signaling in chronic pain and inflammation. Current Pharmaceutical Biotechnology 12: 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  26. D’Haese, J.G., I.E. Demir, H. Friess, and G.O. Ceyhan. 2010. Fractalkine/CX3CR1: Why a single chemokine-receptor duo bears a major and unique therapeutic potential. Expert Opinion on Therapeutic Targets 14: 207–219.

    Article  PubMed  Google Scholar 

  27. Chandrasekar, B., S. Mummidi, R.P. Perla, S. Bysani, N.O. Dulin, F. Liu, et al. 2003. Fractalkine (CX3CL1) stimulated by nuclear factor kappaB (NF-kappaB)-dependent inflammatory signals induces aortic smooth muscle cell proliferation through an autocrine pathway. Biochemical Journal 373: 547–558.

    Article  CAS  PubMed Central  Google Scholar 

  28. Sung, M.J., D.H. Kim, M. Davaatseren, H.J. Hur, W. Kim, Y.J. Jung, et al. 2010. Genistein suppression of TNF-alpha-induced fractalkine expression in endothelial cells. Cellular Physiology and Biochemistry 26: 431–440.

    Article  CAS  PubMed  Google Scholar 

  29. Cabal-Hierro, L., and P.S. Lazo. 2012. Signal transduction by tumor necrosis factor receptors. Cellular Signalling 24: 1297–1305.

    Article  CAS  PubMed  Google Scholar 

  30. Inzucchi, S.E., R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, et al. 2015. Management of hyperglycemia in type 2 diabetes, 2015: A patient-centered approach: Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38: 140–149.

    Article  PubMed  Google Scholar 

  31. Marín-Peñalver, J.J., I. Martín-Timón, C. Sevillano-Collantes, and F.J. del Cañizo-Gómez. 2016. Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes 7: 354–395.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ijäs, H., M. Vääräsmäki, L. Morin-Papunen, R. Keravuo, T. Ebeling, T. Saarela, et al. 2011. Metformin should be considered in the treatment of gestational diabetes: A prospective randomised study. British Journal of Obstetrics and Gynaecology 118: 880–885.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao, L.P., X.Y. Sheng, S. Zhou, T. Yang, L.Y. Ma, Y. Zhou, et al. 2015. Metformin versus insulin for gestational diabetes mellitus: A meta-analysis. British Journal of Clinical Pharmacology 80: 1224–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Charles, B., R. Norris, X. Xiao, and W. Hague. 2006. Population pharmacokinetics of metformin in late pregnancy. Therapeutic Drug Monitoring 28: 67–72.

    Article  CAS  PubMed  Google Scholar 

  35. Vanky, E., K. Zahlsen, O. Spigset, and S.M. Carlsen. 2005. Placental passage of metformin in women with polycystic ovary syndrome. Fertility and Sterility 83: 1575–1578.

    Article  PubMed  Google Scholar 

  36. Hattori, Y., K. Suzuki, S. Hattori, and K. Kasai. 2006. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  37. Saisho, Y. 2015. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocrine Metabolic & Immune Disorders Drug Targets 15: 196–205.

    Article  CAS  Google Scholar 

  38. Rena, G., D.G. Hardie, and E.R. Pearson. 2017. The mechanism of action of metformin. Diabetologia 60: 1577–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Szukiewicz, D., M. Pyzlak, G. Szewczyk, A. Stangret, S. Trojanowski, M. Bachanek, et al. 2017. High glucose level disturbs the resveratrol-evoked curtailment of CX3CL1/CX3CR1 signaling in human placental circulation. Mediators of Inflammation 2017: 9853108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Schneider, H., K.H. Möhlen, J.C. Challier, and J. Dancis. 1979. Transfer of glutamic acid across the human placenta perfused in vitro. British Journal of Obstetrics and Gynaecology 86: 299–306.

    Article  CAS  PubMed  Google Scholar 

  41. Szukiewicz, D., J. Kochanowski, T.K. Mittal, M. Pyzlak, G. Szewczyk, and K. Cendrowski. 2014. CX3CL1 (fractalkine) and TNFα production by perfused human placental lobules under normoxic and hypoxic conditions in vitro: The importance of CX3CR1 signaling. Inflammation Research 63: 179–189.

    Article  CAS  PubMed  Google Scholar 

  42. Kajbaf, F., M.E. De Broe, and J.D. Lalau. 2016. Therapeutic concentrations of metformin: A systematic review. Clinical Pharmacokinetics 55: 439–459.

    Article  CAS  PubMed  Google Scholar 

  43. Scheen, A.J. 2013. Pharmacokinetic considerations for the treatment of diabetes in patients with chronic kidney disease. Expert Opinion on Drug Metabolism &Toxicology 9: 529–550.

    Article  CAS  Google Scholar 

  44. Hoesel, B., and J.A. Schmid. 2013. The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer 12: 1–15.

    Article  CAS  Google Scholar 

  45. Ryu, J., C.W. Lee, K.H. Hong, J.A. Shin, S.H. Lim, C.S. Park, et al. 2008. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia. Cardiovascular Research 78: 333–340.

    Article  CAS  PubMed  Google Scholar 

  46. Szukiewicz, D., M. Wojciechowska, A. Bilska, A. Stangret, G. Szewczyk, T.K. Mittal, et al. 2015. Aspirin action in endothelial cells: Different patterns of response between chemokine CX3CL1/CX3CR1 and TNF-α/TNFR1 signaling pathways. Cardiovascular Drugs and Therapy 29: 219–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, X.P., S. Mattagajasingh, S. Su, G. Chen, Z. Cai, K. Fox-Talbot, et al. 2007. Fractalkine upregulates intercellular adhesion molecule-1 in endothelial cells through CX3CR1 and the Jak Stat5 pathway. Circulation Research 101: 1001–1008.

    Article  CAS  PubMed  Google Scholar 

  48. Szukiewicz, D., A. Szukiewicz, D. Maslinska, G. Szewczyk, and M. Watroba. 2003. Mast cell-derived vascular endothelial growth factor (VEGF) and microvascular density in diabetic placentae. Inflammation Research 52 (Supplement 1): S9–S10.

    Article  CAS  Google Scholar 

  49. Szukiewicz, D., A. Szukiewicz, D. Maslinska, and M.W. Markowski. 1999. Placental mast cells (MC) and histamine (HA) in pregnancy complicated by diabetes class C—Relation to the development of villous microvessels. Placenta 20 (Supplement 1): 503–510.

    Article  Google Scholar 

  50. Huppertz, B., E. Abe, P. Murthi, T. Nagamatsu, D. Szukiewicz, and C. Salafia. 2007. Placental angiogenesis, maternal and fetal vessels—A workshop report. Placenta 28 (Supplement A): S94–S96.

    Article  PubMed  Google Scholar 

  51. Gui, J., Q. Liu, and L. Feng. 2013. Metformin vs insulin in the management of gestational diabetes: A meta-analysis. PLoS One 8: e64585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arshad, R., S. Khanam, F. Shaikh, and N. Karim. 2017. Feto-maternal outcomes and glycemic control in metformin versus insulin treated gestational diabetics. Pakistan Journal of Medical Sciences 33: 1182–1187.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Serhan, C.N. 2017. Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms. FASEB Journal 31: 1273–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lattenist, L., P. Ochodnicky, M. Ahdi, N. Claessen, J.C. Leemans, S.C. Satchell, et al. 2016. Renal endothelial protein C receptor expression and shedding during diabetic nephropathy. Journal of Thrombosis and Haemostasis 14: 1171–1182.

    Article  CAS  PubMed  Google Scholar 

  55. Hurst, L.A., R.A. Bunning, B. Sharrack, and M.N. Woodroofe. 2012. siRNA knockdown of ADAM-10, but not ADAM-17, significantly reduces fractalkine shedding following pro-inflammatory cytokine treatment in a human adult brain endothelial cell line. Neuroscience Letters 521: 52–56.

    Article  CAS  PubMed  Google Scholar 

  56. Hyun, B., S. Shin, A. Lee, S. Lee, Y. Song, N.J. Ha, et al. 2013. Metformin down-regulates TNF-α secretion via suppression of scavenger receptors in macrophages. Immune Network 13: 123–132.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kikuchi, Y., R. Ikee, N. Hemmi, N. Hyodo, T. Saigusa, T. Namikoshi, et al. 2004. Fractalkine and its receptor, CX3CR1, upregulation in streptozotocin-induced diabetic kidneys. Nephron Experimental Nephrology 97: e17–e25.

    Article  CAS  PubMed  Google Scholar 

  58. Cho, J.G., J.J. Song, J. Choi, G.J. Im, H.H. Jung, and S.W. Chae. 2016. The suppressive effects of metformin on inflammatory response of otitis media model in human middle ear epithelial cells. International Journal of Pediatric Otorhinolaryngology 89: 28–32.

    Article  PubMed  Google Scholar 

  59. Ramana, K.V., B. Friedrich, S. Srivastava, A. Bhatnagar, and S.K. Srivastava. 2004. Activation of nuclear factor-κB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase. Diabetes 53: 2910–2920.

    Article  CAS  PubMed  Google Scholar 

  60. Mitchell, S., J. Vargas, and A. Hoffmann. 2016. Signaling via the NFκB system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 8: 227–241.

    CAS  PubMed  Google Scholar 

  61. Jawerbaum, A., and E. González. 2006. Diabetic pregnancies: The challenge of developing in a pro-inflammatory environment. Current Medicinal Chemistry 13: 2127–2138.

    Article  CAS  PubMed  Google Scholar 

  62. Magee, T.R., M.G. Ross, L. Wedekind, M. Desai, S. Kjos, and L. Belkacemi. 2014. Gestational diabetes mellitus alters apoptotic and inflammatory gene expression of trophoblasts from human term placenta. Journal of Diabetes and Its Complications 28: 448–459.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ozsoy, H.Z., N. Sivasubramanian, E.D. Wieder, S. Pedersen, and D.L. Mann. 2008. Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. Journal of Biological Chemistry 283: 23419–23428.

    Article  CAS  Google Scholar 

  64. Fernández-Juárez, G., J.V. Perez, J.L. Fernández, E. Martinez-Martinez, V. Cachofeiro, V. Barrio Lucia, et al. 2017. High levels of circulating TNFR1 increase the risk of all-cause mortality and progression of renal disease in type 2 diabetic nephropathy. Nephrology (Carlton) 22: 354–360.

    Article  CAS  Google Scholar 

  65. Schmidt, A., D.M. Morales-Prieto, J. Pastuschek, K. Fröhlich, and U.R. Markert. 2015. Only humans have human placentas: Molecular differences between mice and humans. Journal of Reproductive Immunology 108: 65–71.

    Article  CAS  PubMed  Google Scholar 

  66. Umehara, H., E.T. Bloom, T. Okazaki, Y. Nagano, O. Yoshie, and T. Imai. 2004. Fractalkine in vascular biology: From basic research to clinical disease. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 34–40.

    Article  CAS  PubMed  Google Scholar 

  67. Golovchenko, I., N.L. Goalstone, P. Watson, M. Brownlee, and B. Draznin. 2000. Hyperinsulinemia enhances transcriptional activity of nuclear factor-κB induced by angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells. Circulation Research 87: 746–752.

    Article  CAS  PubMed  Google Scholar 

  68. Macedo da Costa, T.H., F.V. Pires da Silva, C.E. Gonçalves Reis, and Casulari L. Augusto. 2014. Improved metabolic response after 16 weeks of calorie-restricted low-glycaemic index diet and metformin in impaired glucose tolerance subjects. Nutricion Hospitalaria 29: 1081–1087.

    PubMed  Google Scholar 

  69. Dodd, J.M., R.M. Grivell, A.R. Deussen, G. Dekker, J. Louise, and W. Hague. 2016. Metformin and dietary advice to improve insulin sensitivity and promote gestational restriction of weight among pregnant women who are overweight or obese: The GRoW Randomised Trial. BMC Pregnancy and Childbirth 16: 359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cvitic, S., G. Desoye, and U. Hiden. 2014. Glucose, insulin, and oxygen interplay in placental hypervascularisation in diabetes mellitus. BioMed Research International 2014: 12.

    Article  CAS  Google Scholar 

  71. Li, H.P., X. Chen, and M.Q. Li. 2013. Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. International Journal of Clinical and Experimental Pathology 6: 650–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Spradley, F.T. 2017. Metabolic abnormalities and obesity’s impact on the risk for developing preeclampsia. American Journal of Physiology. Regulatory Integrative and Comparative Physiology 312: R5–R12.

    Article  Google Scholar 

  73. Szukiewicz, D., M. Pyzlak, G. Szewczyk, J. Wejman, and J. Kochanowski. 2017. Hypoxia disturbs the metformin-evoked curtailment of chemokine CX3CL1 (fractalkine) signaling in human umbilical vein endothelial cells (HUVECs). Abstract in: The FASEB Journal 31 (Suppl): 833.9.

    Google Scholar 

  74. Leach, L., A. Taylor, and F. Sciota. 2009. Vascular dysfunction in the diabetic placenta: Causes and consequences. Journal of Anatomy 215: 69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ainuddin, J.A., N. Karim, S. Zaheer, S.S. Ali, and A.A. Hasan. 2015. Metformin treatment in type 2 diabetes in pregnancy: An active controlled, parallel-group, randomized, open label study in patients with type 2 diabetes in pregnancy. Journal of Diabetes Research 2015: 325851.

    Article  PubMed  PubMed Central  Google Scholar 

  76. De Haes, W., L. Frooninckx, R. Van Assche, A. Smolders, G. Depuydt, J. Billen, et al. 2014. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proceedings of the National Academy of Sciences of the United States of America 111: E2501–E2509.

    PubMed  PubMed Central  Google Scholar 

  77. Liang, H.L., S.J. Ma, Y.N. Xiao, and H.Z. Tan. 2017. Comparative efficacy and safety of oral antidiabetic drugs and insulin in treating gestational diabetes mellitus: An updated PRISMA-compliant network meta-analysis. Medicine (Baltimore) 96: e7939.

    Article  CAS  Google Scholar 

  78. Vanlalhruaii, R. Dasgupta, R. Ramachandran, J.E. Mathews, A. Regi, N. Thomas, et al. 2018. How safe is metformin when initiated in early pregnancy? A retrospective 5-year study of pregnant women with gestational diabetes mellitus from India. Diabetes Research and Clinical Practice 137: 47–55.

    Article  CAS  PubMed  Google Scholar 

  79. Feig, D.S., and R.G. Moses. 2011. Metformin therapy during pregnancy: Good for the goose and good for the gosling too? Diabetes Care 34: 2329–2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rowan, J.A., E.C. Rush, V. Obolonkin, M. Battin, T. Wouldes, and W.M. Hague. 2011. Metformin in gestational diabetes: The offspring follow-up (MiG TOFU): Body composition at 2 years of age. Diabetes Care 34: 2279–2284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Panchaud, A., V. Rousson, T. Vial, N. Bernard, D. Baud, E. Amar, et al. 2017. Pregnancy outcomes in women on metformin for diabetes or other indications among those seeking teratology information services. British Journal of Clinical Pharmacology 84: 568–578.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The creative contribution to the study design provided by Professor Slawomir Maslinski is gratefully acknowledged.

Funding

This study was funded by internal Grant no. 2M2/W1/16, funded by the Medical University of Warsaw, Poland. No additional external funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Szukiewicz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szukiewicz, D., Szewczyk, G., Pyzlak, M. et al. Anti-inflammatory Action of Metformin with Respect to CX3CL1/CX3CR1 Signaling in Human Placental Circulation in Normal-Glucose Versus High-Glucose Environments. Inflammation 41, 2246–2264 (2018). https://doi.org/10.1007/s10753-018-0867-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0867-7

KEY WORDS

Navigation