Advertisement

Inflammation

, Volume 41, Issue 6, pp 2206–2221 | Cite as

Antibody Cross-Linking of CD14 Activates MerTK and Promotes Human Macrophage Clearance of Apoptotic Neutrophils: the Dual Role of CD14 at the Crossroads Between M1 and M2c Polarization

  • Gaetano Zizzo
  • Philip L. Cohen
ORIGINAL ARTICLE

Abstract

Mer receptor tyrosine kinase (MerTK) is key for efficient phagocytosis of apoptotic neutrophils (ANs) and homeostasis of IL-10 production by human anti-inflammatory M2c monocytes/macrophages. We asked whether stimulation of M2c surface receptors contributes in turn to MerTK activation. For this purpose, human monocytes/macrophages were differentiated under M1, M2a, and M2c polarizing conditions. The effects of antibody-mediated cross-linking of M2c receptors (i.e., CD14, CD16, CD32, CD163, CD204) on MerTK phosphorylation and phagocytosis of ANs were tested. MerTK expression was also studied by flow cytometry and western blot in the presence of LPS and in M2c-derived microvesicles (MVs). Antibody cross-linking of either CD14 or CD32/FcγRII led to Syk activation and MerTK phosphorylation in its two distinct glycoforms (175–205 and 135–155 kDa). Cross-linked CD14 enhanced efferocytosis by M2c macrophages and enabled M1 and M2a cells to clear ANs efficiently. In M1 conditions, LPS abolished surface MerTK expression on CD14bright cell subsets, so disrupting the anti-inflammatory pathway. In M2c cells, instead, MerTK was diffusely and brightly co-expressed with CD14, and was also detected in M2c macrophage-derived MVs; in these conditions, LPS only partially downregulated MerTK on cell surfaces, while the smaller MerTK glycoform contained in MVs remained intact. Altogether, cooperation between CD14 and MerTK may foster the clearance of ANs by human monocytes/macrophages. CD14 stands between M1-related LPS co-receptor activity and M2c-related MerTK-dependent response. MerTK interaction with CD32/FcγRII, its detection in M2c MVs, and the differential localization and LPS susceptibility of MerTK glycoforms add further new elements to the complexity of the MerTK network.

KEY WORDS

Mer receptor tyrosine kinase (MerTK) CD14 CD32 (FcγRII) human macrophages apoptotic neutrophils (ANs) microvesicles (MVs) 

Notes

Funding

This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID), grant 5U19AI082726 (Philadelphia Autoimmunity Center of Excellence), by a bequest from Ms. B. Wicks, and by the Judith Shockman Memorial Fund.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zizzo, G., and P.L. Cohen. 2013. IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids. Journal of Immunology 190: 5237–5246.CrossRefGoogle Scholar
  2. 2.
    Zizzo, G., B.A. Hilliard, M. Monestier, and P.L. Cohen. 2012. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. Journal of Immunology 189: 3508–3520.CrossRefGoogle Scholar
  3. 3.
    McColl, A., S. Bournazos, S. Franz, M. Perretti, B.P. Morgan, C. Haslett, and I. Dransfield. 2009. Glucocorticoids induce protein S-dependent phagocytosis of apoptotic neutrophils by human macrophages. Journal of Immunology 183: 2167–2175.CrossRefGoogle Scholar
  4. 4.
    Wu, Y., S. Singh, M.M. Georgescu, and R.B. Birge. 2005. A role for Mer tyrosine kinase in αvbeta5 integrin-mediated phagocytosis of apoptotic cells. Journal of Cell Science 118: 539–553.CrossRefGoogle Scholar
  5. 5.
    Nishi, C., S. Toda, K. Segawa, and S. Nagata. 2014. Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Molecular and Cellular Biology 34: 1512–1520.CrossRefGoogle Scholar
  6. 6.
    Todt, J.C., B. Hu, and J.L. Curtis. 2008. The scavenger receptor SR-A I/II (CD204) signals via the receptor tyrosine kinase Mertk during apoptotic cell uptake by murine macrophages. Journal of Leukocyte Biology 84: 510–518.CrossRefGoogle Scholar
  7. 7.
    Galvan, M.D., D.B. Foreman, E. Zeng, J.C. Tan, and S.S. Bohlson. 2012. Complement component C1q regulates macrophage expression of Mer tyrosine kinase to promote clearance of apoptotic cells. Journal of Immunology 188: 3716–3723.CrossRefGoogle Scholar
  8. 8.
    Liao, D., X. Wang, M. Li, P.H. Lin, Q. Yao, and C. Chen. 2009. Human protein S inhibits the uptake of AcLDL and expression of SR-A through Mer receptor tyrosine kinase in human macrophages. Blood 113: 165–174.CrossRefGoogle Scholar
  9. 9.
    Hulsebus, H.J., S.D. O'Conner, E.M. Smith, C. Jie, and S.S. Bohlson. 2016. Complement component C1q programs a pro-efferocytic phenotype while limiting TNFα production in primary mouse and human macrophages. Frontiers in Immunology 7: 230.CrossRefGoogle Scholar
  10. 10.
    Dransfield, I., A. Zagórska, E.D. Lew, K. Michail, and G. Lemke. 2015. Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells. Cell Death & Disease 6: e1646.CrossRefGoogle Scholar
  11. 11.
    Graham, D.K., T.L. Dawson, D.L. Mullaney, H.R. Snodgrass, and H.S. Earp. 1994. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth & Differentiation 5: 647–657.Google Scholar
  12. 12.
    Mikołajczyk, T.P., J.E. Skrzeczyńska-Moncznik, M.A. Zarebski, E.A. Marewicz, A.M. Wiśniewska, M. Dzieba, J.W. Dobrucki, and J.R. Pryjma. 2009. Interaction of human peripheral blood monocytes with apoptotic polymorphonuclear cells. Immunology 128: 103–113.CrossRefGoogle Scholar
  13. 13.
    Hashimoto, S., M. Yamada, K. Motoyoshi, and K.S. Akagawa. 1997. Enhancement of macrophage colony-stimulating factor-induced growth and differentiation of human monocytes by interleukin-10. Blood 89: 315–321.PubMedGoogle Scholar
  14. 14.
    Feng, W., D. Yasumura, M.T. Matthes, M.M. LaVail, and D. Vollrath. 2002. Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells. The Journal of Biological Chemistry 277: 17016–17022.CrossRefGoogle Scholar
  15. 15.
    Graham, D.K., D.B. Salzberg, J. Kurtzberg, S. Sather, G.K. Matsushima, A.K. Keating, X. Liang, M.A. Lovell, S.A. Williams, T.L. Dawson, M.J. Schell, A.A. Anwar, H.R. Snodgrass, and H.S. Earp. 2006. Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia. Clinical Cancer Research 12: 2662–2669.CrossRefGoogle Scholar
  16. 16.
    Migdall-Wilson, J., C. Bates, J. Schlegel, L. Brandão, R.M. Linger, D. DeRyckere, and D.K. Graham. 2012. Prolonged exposure to a Mer ligand in leukemia: Gas6 favors expression of a partial Mer glycoform and reveals a novel role for Mer in the nucleus. PLoS One 7: e31635.CrossRefGoogle Scholar
  17. 17.
    Zizzo, G., and P.L. Cohen. 2015. The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization. Journal of Inflammation (Lond) 12: 36.CrossRefGoogle Scholar
  18. 18.
    Schlegel, R.A., S. Krahling, M.K. Callahan, and P. Williamson. 1999. CD14 is a component of multiple recognition systems used by macrophages to phagocytose apoptotic lymphocytes. Cell Death and Differentiation 6: 583–592.CrossRefGoogle Scholar
  19. 19.
    Ogden, C.A., J.D. Pound, B.K. Batth, S. Owens, I. Johannessen, K. Wood, and C.D. Gregory. 2005. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt's lymphoma. Journal of Immunology 174: 3015–3023.CrossRefGoogle Scholar
  20. 20.
    Xu, W., A. Roos, N. Schlagwein, A.M. Woltman, M.R. Daha, and C. van Kooten. 2006. IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107: 4930–4937.CrossRefGoogle Scholar
  21. 21.
    Flora, P.K., and C.D. Gregory. 1994. Recognition of apoptotic cells by human macrophages: inhibition by a monocyte/macrophage-specific monoclonal antibody. European Journal of Immunology 24: 2625–2632.CrossRefGoogle Scholar
  22. 22.
    Fadok, V.A., M.L. Warner, D.L. Bratton, and P.M. Henson. 1998. CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (α v beta 3). Journal of Immunology 161: 6250–6257.Google Scholar
  23. 23.
    Devitt, A., S. Pierce, C. Oldreive, W.H. Shingler, and C.D. Gregory. 2003. CD14-dependent clearance of apoptotic cells by human macrophages: the role of phosphatidylserine. Cell Death and Differentiation 10: 371–382.CrossRefGoogle Scholar
  24. 24.
    Hodrea, J., G. Majai, Z. Doró, G. Zahuczky, A. Pap, É. Rajnavölgyi, and L. Fésüs. 2012. The glucocorticoid dexamethasone programs human dendritic cells for enhanced phagocytosis of apoptotic neutrophils and inflammatory response. Journal of Leukocyte Biology 91: 127–136.CrossRefGoogle Scholar
  25. 25.
    Haziot, A., X.Y. Lin, F. Zhang, and S.M. Goyert. 1998. The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent. Journal of Immunology 160: 2570–2572.Google Scholar
  26. 26.
    Zanoni, I., R. Ostuni, L.R. Marek, S. Barresi, R. Barbalat, G.M. Barton, F. Granucci, and J.C. Kagan. 2011. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147: 868–880.CrossRefGoogle Scholar
  27. 27.
    Crowley, M.T., P.S. Costello, C.J. Fitzer-Attas, M. Turner, F. Meng, C. Lowell, V.L. Tybulewicz, and A.L. DeFranco. 1997. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. The Journal of Experimental Medicine 186: 1027–1039.CrossRefGoogle Scholar
  28. 28.
    Pan, X.Q., C. Darby, Z.K. Indik, and A.D. Schreiber. 1999. Activation of three classes of nonreceptor tyrosine kinases following Fc gamma receptor crosslinking in human monocytes. Clinical Immunology 90: 55–64.CrossRefGoogle Scholar
  29. 29.
    Thorp, E., T. Vaisar, M. Subramanian, L. Mautner, C. Blobel, and I. Tabas. 2011. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). The Journal of Biological Chemistry 286: 33335–33344.CrossRefGoogle Scholar
  30. 30.
    Satta, N., F. Toti, O. Feugeas, A. Bohbot, J. Dachary-Prigent, V. Eschwège, H. Hedman, and J.M. Freyssinet. 1994. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. Journal of Immunology 153: 3245–3255.Google Scholar
  31. 31.
    Sarkar, A., S. Mitra, S. Mehta, R. Raices, and M.D. Wewers. 2009. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 4: e7140.CrossRefGoogle Scholar
  32. 32.
    Distler, J.H., D.S. Pisetsky, L.C. Huber, J.R. Kalden, S. Gay, and O. Distler. 2005. Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis and Rheumatism 52: 3337–3348.CrossRefGoogle Scholar
  33. 33.
    Braig, D., T.L. Nero, H.G. Koch, B. Kaiser, X. Wang, J.R. Thiele, C.J. Morton, J. Zeller, J. Kiefer, L.A. Potempa, N.A. Mellett, L.A. Miles, X.J. Du, P.J. Meikle, M. Huber-Lang, G.B. Stark, M.W. Parker, K. Peter, and S.U. Eisenhardt. 2017. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nature Communications 8: 14188.CrossRefGoogle Scholar
  34. 34.
    Liu, M.L., M.P. Reilly, P. Casasanto, S.E. McKenzie, and K.J. Williams. 2007. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 430–435.CrossRefGoogle Scholar
  35. 35.
    Wright, S.D., R.A. Ramos, P.S. Tobias, R.J. Ulevitch, and J.C. Mathison. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433.CrossRefGoogle Scholar
  36. 36.
    Wang, P.Y., R.L. Kitchens, and R.S. Munford. 1998. Phosphatidylinositides bind to plasma membrane CD14 and can prevent monocyte activation by bacterial lipopolysaccharide. The Journal of Biological Chemistry 273: 24309–24313.CrossRefGoogle Scholar
  37. 37.
    Akashi, S., H. Ogata, F. Kirikae, T. Kirikae, K. Kawasaki, M. Nishijima, R. Shimazu, Y. Nagai, K. Fukudome, M. Kimoto, and K. Miyake. 2000. Regulatory roles for CD14 and phosphatidylinositol in the signaling via toll-like receptor 4-MD-2. Biochemical and Biophysical Research Communications 268: 172–177.CrossRefGoogle Scholar
  38. 38.
    Devitt, A., O.D. Moffatt, C. Raykundalia, J.D. Capra, D.L. Simmons, and C.D. Gregory. 1998. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392: 505–509.CrossRefGoogle Scholar
  39. 39.
    Hoffmann, P.R., A.M. de Cathelineau, C.A. Ogden, Y. Leverrier, D.L. Bratton, D.L. Daleke, A.J. Ridley, V.A. Fadok, and P.M. Henson. 2001. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol. 155: 649–659.CrossRefGoogle Scholar
  40. 40.
    Lingnau, M., C. Höflich, H.D. Volk, R. Sabat, and W.D. Döcke. 2007. Interleukin-10 enhances the CD14-dependent phagocytosis of bacteria and apoptotic cells by human monocytes. Human Immunology 68: 730–738.CrossRefGoogle Scholar
  41. 41.
    Scott, R.S., E.J. McMahon, S.M. Pop, E.A. Reap, R. Caricchio, P.L. Cohen, H.S. Earp, and G.K. Matsushima. 2001. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411: 207–211.CrossRefGoogle Scholar
  42. 42.
    Cohen, P.L., R. Caricchio, V. Abraham, T.D. Camenisch, J.C. Jennette, R.A. Roubey, H.S. Earp, G. Matsushima, and E.A. Reap. 2002. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. The Journal of Experimental Medicine 196: 135–140.CrossRefGoogle Scholar
  43. 43.
    Shao, W.H., Y. Zhen, R.A. Eisenberg, and P.L. Cohen. 2009. The Mer receptor tyrosine kinase is expressed on discrete macrophage subpopulations and mainly uses Gas6 as its ligand for uptake of apoptotic cells. Clinical Immunology 133: 138–144.CrossRefGoogle Scholar
  44. 44.
    Devitt, A., K.G. Parker, C.A. Ogden, C. Oldreive, M.F. Clay, L.A. Melville, C.O. Bellamy, A. Lacy-Hulbert, S.C. Gangloff, S.M. Goyert, and C.D. Gregory. 2004. Persistence of apoptotic cells without autoimmune disease or inflammation in CD14-/- mice. The Journal of Cell Biology 167: 1161–1170.CrossRefGoogle Scholar
  45. 45.
    Sen, P., M.A. Wallet, Z. Yi, Y. Huang, M. Henderson, C.E. Mathews, H.S. Earp, G. Matsushima, A.S. Baldwin Jr., and R.M. Tisch. 2007. Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kappaB activation in dendritic cells. Blood 109: 653–660.CrossRefGoogle Scholar
  46. 46.
    Healy, L.M., G. Perron, S.Y. Won, M.A. Michell-Robinson, A. Rezk, S.K. Ludwin, C.S. Moore, J.A. Hall, A. Bar-Or, and J.P. Antel. 2016. MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. Journal of Immunology 196: 3375–3384.CrossRefGoogle Scholar
  47. 47.
    Shiratsuchi, A., I. Watanabe, O. Takeuchi, S. Akira, and Y. Nakanishi. 2004. Inhibitory effect of Toll-like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. Journal of Immunology 172: 2039–2047.CrossRefGoogle Scholar
  48. 48.
    Thomas, L., A. Bielemeier, P.A. Lambert, R.P. Darveau, L.J. Marshall, and A. Devitt. 2013. The N-terminus of CD14 acts to bind apoptotic cells and confers rapid-tethering capabilities on non-myeloid cells. PLoS One 8: e70691.CrossRefGoogle Scholar
  49. 49.
    Black, R.A., C.T. Rauch, C.J. Kozlosky, J.J. Peschon, J.L. Slack, M.F. Wolfson, B.J. Castner, K.L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K.A. Schooley, M. Gerhart, R. Davis, J.N. Fitzner, R.S. Johnson, R.J. Paxton, C.J. March, and D.P. Cerretti. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385: 729–733.CrossRefGoogle Scholar
  50. 50.
    Camenisch, T.D., B.H. Koller, H.S. Earp, and G.K. Matsushima. 1999. A novel receptor tyrosine kinase, Mer, inhibits TNF-α production and lipopolysaccharide-induced endotoxic shock. Journal of Immunology 162: 3498–3503.Google Scholar
  51. 51.
    Alciato, F., P.P. Sainaghi, D. Sola, L. Castello, and G.C. Avanzi. 2010. TNF-α, IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. Journal of Leukocyte Biology 87: 869–875.CrossRefGoogle Scholar
  52. 52.
    Liu, M.L., R. Scalia, J.L. Mehta, and K.J. Williams. 2012. Cholesterol-induced membrane microvesicles as novel carriers of damage-associated molecular patterns: mechanisms of formation, action, and detoxification. Arteriosclerosis, Thrombosis, and Vascular Biology 32: 2113–2121.CrossRefGoogle Scholar
  53. 53.
    Anwar, A., A.K. Keating, D. Joung, S. Sather, G.K. Kim, K.K. Sawczyn, L. Brandão, P.M. Henson, and D.K. Graham. 2009. Mer tyrosine kinase (MerTK) promotes macrophage survival following exposure to oxidative stress. Journal of Leukocyte Biology 86: 73–79.CrossRefGoogle Scholar
  54. 54.
    Suh, C.H., B. Hilliard, S. Li, J.T. Merrill, and P.L. Cohen. 2010. TAM receptor ligands in lupus: protein S but not Gas6 levels reflect disease activity in systemic lupus erythematosus. Arthritis Research & Therapy 12: R146.CrossRefGoogle Scholar
  55. 55.
    Zizzo, G., J. Guerrieri, L.M. Dittman, J.T. Merrill, and P.L. Cohen. 2013. Circulating levels of soluble MER in lupus reflect M2c activation of monocytes/macrophages, autoantibody specificities and disease activity. Arthritis Research & Therapy 15: R212.CrossRefGoogle Scholar
  56. 56.
    Gris, J.C., P. Toulon, S. Brun, C. Maugard, C. Sarlat, J.F. Schved, and J. Berlan. 1996. The relationship between plasma microparticles, protein S and anticardiolipin antibodies in patients with human immunodeficiency virus infection. Thrombosis and Haemostasis 76: 38–45.CrossRefGoogle Scholar
  57. 57.
    Cosemans, J.M., R. Van Kruchten, S. Olieslagers, L.J. Schurgers, F.K. Verheyen, I.C. Munnix, J. Waltenberger, A. Angelillo-Scherrer, M.F. Hoylaerts, P. Carmeliet, and J.W. Heemskerk. 2010. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. Journal of Thrombosis and Haemostasis 8: 1797–1808.CrossRefGoogle Scholar
  58. 58.
    Loges, S., T. Schmidt, M. Tjwa, K. van Geyte, D. Lievens, E. Lutgens, D. Vanhoutte, D. Borgel, S. Plaisance, M. Hoylaerts, A. Luttun, M. Dewerchin, B. Jonckx, and P. Carmeliet. 2010. Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 115: 2264–2273.CrossRefGoogle Scholar
  59. 59.
    Chaudhary, A., T.M. Fresquez, and M.J. Naranjo. 2007. Tyrosine kinase Syk associates with toll-like receptor 4 and regulates signaling in human monocytic cells. Immunology and Cell Biology 85: 249–256.CrossRefGoogle Scholar
  60. 60.
    Hart, S.P., K.M. Alexander, and I. Dransfield. 2004. Immune complexes bind preferentially to Fc gamma RIIA (CD32) on apoptotic neutrophils, leading to augmented phagocytosis by macrophages and release of proinflammatory cytokines. Journal of Immunology 172: 1882–1887.CrossRefGoogle Scholar
  61. 61.
    Muñoz, L.E., C. Janko, G.E. Grossmayer, B. Frey, R.E. Voll, P. Kern, J.R. Kalden, G. Schett, R. Fietkau, M. Herrmann, and U.S. Gaipl. 2009. Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis and Rheumatism 60: 1733–1742.CrossRefGoogle Scholar
  62. 62.
    Zhang, W., W. Xu, and S. Xiong. 2010. Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. Journal of Immunology 184: 6465–6478.CrossRefGoogle Scholar
  63. 63.
    Hiasa, M., M. Abe, A. Nakano, A. Oda, H. Amou, S. Kido, K. Takeuchi, K. Kagawa, K. Yata, T. Hashimoto, S. Ozaki, K. Asaoka, E. Tanaka, K. Moriyama, and T. Matsumoto. 2009. GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-α converting enzyme (TACE). Blood 114: 4517–4526.CrossRefGoogle Scholar
  64. 64.
    Etzerodt, A., M.B. Maniecki, K. Møller, H.J. Møller, and S.K. Moestrup. 2010. Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. Journal of Leukocyte Biology 88: 1201–1205.CrossRefGoogle Scholar
  65. 65.
    Båve, U., M. Magnusson, M.L. Eloranta, A. Perers, G.V. Alm, and L. Rönnblom. 2003. Fc gamma RIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. Journal of Immunology 171: 3296–3302.CrossRefGoogle Scholar
  66. 66.
    Weis, N., A. Weigert, A. von Knethen, and B. Brüne. 2009. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Molecular Biology of the Cell 20: 1280–1288.CrossRefGoogle Scholar
  67. 67.
    Duong, C.Q., S.M. Bared, A. Abu-Khader, C. Buechler, A. Schmitz, and G. Schmitz. 2004. Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages. Biochimica et Biophysica Acta 1682: 112–119.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Temple Autoimmunity CenterTemple UniversityPhiladelphiaUSA
  2. 2.Section of Rheumatology, Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaUSA

Personalised recommendations