, Volume 41, Issue 5, pp 1690–1701 | Cite as

The In Vitro Impact of Glycyrrhizic Acid on CD4+ T Lymphocytes through OX40 Receptor in the Patients with Allergic Rhinitis

  • Saloomeh Fouladi
  • Mohsen Masjedi
  • Ramin Ghasemi
  • Mazdak G. Hakemi
  • Nahid Eskandari


Glycyrrhizic acid (GA), the major bioactive component of glycyrrhiza, possesses anti-inflammatory, anti-allergic, and immunomodulatory activities. This study aimed to investigate the in vitro anti-allergic effect of GA through the OX40 receptor in patients with allergic rhinitis. Purified naive CD4+ T cells of patients with allergic rhinitis (n = 12) were activated with anti-CD3/anti-CD28 with and without anti-OX40 agonist mAbs and then treated with 50, 100, and 200 μM GA and 0.1 μM dexamethasone. Cells were incubated (72 h) to measure cell proliferation. Expression of OX40 in anti-OX40 mAb stimulated CD4+ T cells was evaluated by flow cytometry. mRNA expression of the OX40 receptor and T-bet, GATA-3, and forkhead box P3 (FoxP3) transcriptional factors were measured by a quantitative polymerase chain reaction. The levels of interleukin (IL)-4, IL-10, and interferon-γ (IFN-γ) were also measured. GA inhibited significantly the augmented T cell proliferation induced with anti-OX40 mAb. Protein and gene expression of OX40 was also decreased significantly. Dexamethasone and GA inhibited T-bet and GATA-3 genes expression, but this inhibition was only significant for GATA-3. In contrast, enhanced gene expression of FoxP3 was seen using 200 μM GA and dexamethasone. The levels of IL-4, IL-10, and IFN-γ decreased after treatment with both dexamethasone and GA, but the ratio of IFN-γ/IL-4 (Th1/Th2 balance) increased significantly due to 200 μM GA treatment. This study suggests that GA may have a therapeutic effect on allergic rhinitis, partly by modulation of the Th1/Th2 balance through suppression of OX40 and increasing the activity of regulatory T cells.


glycyrrhizic acid OX40 receptor allergic rhinitis CD4+ T cells 



This work was supported by grant 394902 from Isfahan University of Medical Sciences.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the Ethics Committee of Isfahan University of Medical Sciences (Code of Ethics: IR.MUI.REC.1394.3.902) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Jaruvongvanich, V., P. Mongkolpathumrat, H. Chantaphakul, and J. Klaewsongkram. 2016. Extranasal symptoms of allergic rhinitis are difficult to treat and affect quality of life. Allergology International 65 (2): 199–203.Google Scholar
  2. 2.
    Mansi, N., G. D'Agostino, A.S. Scire, G. Morpurgo, D. Gregori, A. Gulati, and V. Damiani. 2014. Allergic rhinitis in children: a randomized clinical trial targeted at symptoms. Indian Journal of Otolaryngology and Head & Neck Surgery 66 (4): 386–393.CrossRefGoogle Scholar
  3. 3.
    Craig, T.J., A. Sherkat, and S. Safaee. 2010. Congestion and sleep impairment in allergic rhinitis. Current Allergy and Asthma Reports 10 (2): 113–121.CrossRefPubMedGoogle Scholar
  4. 4.
    Shaaban, R., M. Zureik, D. Soussan, C. Neukirch, J. Heinrich, J. Sunyer, M. Wjst, I. Cerveri, I. Pin, J. Bousquet, D. Jarvis, P.G. Burney, F. Neukirch, and B. Leynaert. 2008. Rhinitis and onset of asthma: a longitudinal population-based study. Lancet 372 (9643): 1049–1057.CrossRefPubMedGoogle Scholar
  5. 5.
    Quraishi, S.A., M.J. Davies, and T.J. Craig. 2004. Inflammatory responses in allergic rhinitis: traditional approaches and novel treatment strategies. Journal of the American Osteopathic Association 104 (5 Suppl 5): S7–S15.PubMedGoogle Scholar
  6. 6.
    Pawankar, R., S. Mori, C. Ozu, and S. Kimura. 2011. Overview on the pathomechanisms of allergic rhinitis. Asia Pacific Allergy 1 (3): 157–167.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Deo, S.S., K.J. Mistry, A.M. Kakade, and P.V. Niphadkar. 2010. Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India 27 (2): 66–71.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mo, J.H., Y.J. Chung, and J.H. Kim. 2013. T cell transcriptional factors in allergic rhinitis and its association with clinical features. Asia Pacific Allergy 3 (3): 186–193.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Palomares, O., G. Yaman, A.K. Azkur, T. Akkoc, M. Akdis, and C.A. Akdis. 2010. Role of Treg in immune regulation of allergic diseases. European Journal of Immunology 40 (5): 1232–1240.CrossRefPubMedGoogle Scholar
  10. 10.
    Willoughby, J., J. Griffiths, I. Tews, and M.S. Cragg. 2017. OX40: Structure and function—what questions remain? Molecular Immunology 83: 13–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Croft, M. 2010. Control of immunity by the TNFR-related molecule OX40 (CD134). Annual Review of Immunology 28: 57–78.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kondo, K., K. Okuma, R. Tanaka, L.F. Zhang, A. Kodama, Y. Takahashi, N. Yamamoto, A.A. Ansari, and Y. Tanaka. 2007. Requirements for the functional expression of OX40 ligand on human activated CD4+ and CD8+ T cells. Human Immunology 68 (7): 563–571.CrossRefPubMedGoogle Scholar
  13. 13.
    Ishii, N., T. Takahashi, P. Soroosh, and K. Sugamura. 2010. OX40-OX40 ligand interaction in T cell-mediated immunity and immunopathology. Advances in Immunology 105: 63–98.CrossRefPubMedGoogle Scholar
  14. 14.
    Voo, K.S., L. Bover, M.L. Harline, L.T. Vien, V. Facchinetti, K. Arima, L.W. Kwak, and Y.J. Liu. 2013. Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function. Journal of Immunology 191 (7): 3641–3650.CrossRefGoogle Scholar
  15. 15.
    Burrows, K.E., C. Dumont, C.L. Thompson, M.C. Catley, K.L. Dixon, and D. Marshall. 2015. OX40 blockade inhibits house dust mite driven allergic lung inflammation in mice and in vitro allergic responses in humans. European Journal of Immunology 45 (4): 1116–1128.CrossRefPubMedGoogle Scholar
  16. 16.
    Lei, W., D. Zeng, G. Liu, Y. Zhu, J. Wang, H. Wu, J. Jiang, and J. Huang. 2018. Crucial role of OX40/OX40L signaling in a murine model of asthma. Molecular Medicine Reports 17 (3): 4213–4220.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gumpricht, Eric, Rolf Dahl, Michael W. Devereaux, and Ronald J. Sokol. 2005. Licorice compounds glycyrrhizin and 18β-glycyrrhetinic acid are potent modulators of bile acid-induced cytotoxicity in rat hepatocytes. Journal of Biological Chemistry 280 (11): 10556–10563.CrossRefPubMedGoogle Scholar
  18. 18.
    Isbrucker, R.A., and G.A. Burdock. 2006. Risk and safety assessment on the consumption of licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regulatory Toxicology and Pharmacology 46 (3): 167–192.CrossRefPubMedGoogle Scholar
  19. 19.
    Nesar, A., M. Khalid, A. Juber, M. Mujahid, Badruddin, M. Anuradha, and K. Nazma. 2016. Glycyrrhiza glabra: for traditional uses and pharmacological actions. Advanced Journal of Pharmacie and Life Science Research 4 (2): 23–32.Google Scholar
  20. 20.
    Li, X.L., A.G. Zhou, L. Zhang, and W.J. Chen. 2011. Antioxidant status and immune activity of glycyrrhizin in allergic rhinitis mice. International Journal of Molecular Sciences 12 (2): 905–916.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sasaki, H., M. Takei, M. Kobayashi, R.B. Pollard, and F. Suzuki. 2002. Effect of glycyrrhizin, an active component of licorice roots, on HIV replication in cultures of peripheral blood mononuclear cells from HIV-seropositive patients. Pathobiology 70 (4): 229–236.CrossRefPubMedGoogle Scholar
  22. 22.
    Lin, Yun-Lian, Yi-Chao Hsu, Yung-Tsung Chiu, and Yi-Tsau Huang. 2008. Antifibrotic effects of a herbal combination regimen on hepatic fibrotic rats. Phytotherapy Research 22 (1): 69–76.CrossRefPubMedGoogle Scholar
  23. 23.
    Khazraei-Moradian, Soheila, Mazdak Ganjalikhani-Hakemi, Alireza Andalib, Reza Yazdani, Javad Arasteh, and Gholam Ali Kardar. 2017. The effect of licorice protein fractions on proliferation and apoptosis of gastrointestinal cancer cell lines. Nutrition and Cancer 69 (2): 330–339.CrossRefPubMedGoogle Scholar
  24. 24.
    Razina, T.G., E.P. Zueva, E.N. Amosova, and S.G. Krylova. 2000. Medicinal plant preparations used as adjuvant therapeutics in experimental oncology. Eksperimental'naia i Klinicheskaia Farmakologiia 63 (5): 59–61.PubMedGoogle Scholar
  25. 25.
    Alekperov, Urkhan K. 2002. Plant antimutagens and their mixtures in inhibition of genotoxic effects of xenobiotics and aging processes. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP) 11: S8–S11.Google Scholar
  26. 26.
    Tokiwa, T., K. Harada, T. Matsumura, and T. Tukiyama. 2004. Oriental medicinal herb, Periploca sepium, extract inhibits growth and IL-6 production of human synovial fibroblast-like cells. Biological and Pharmaceutical Bulletin 27 (10): 1691–1693.CrossRefPubMedGoogle Scholar
  27. 27.
    Rui, Yang, Bo-Chuan Yuan, Yong-Sheng Ma, Shan Zhou, and Ying Liu. 2017. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharmaceutical Biology 55 (1): 5–18.CrossRefGoogle Scholar
  28. 28.
    Raphael, T.J., and G. Kuttan. 2003. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine 10 (6–7): 483–489.CrossRefPubMedGoogle Scholar
  29. 29.
    Kaur, Rajandeep, Harpreet Kaur, and Ajaib Singh Dhindsa. 2013. Glycyrrhiza glabra: A phytopharmacological review. International Journal of Pharmaceutical Sciences and Research 4 (7): 2470.Google Scholar
  30. 30.
    Shin, Yong-Wook, Eun-Ah Bae, Bomi Lee, Seung Ho Lee, Jeong Ah. Kim, Yeong-Shik Kim, and Dong-Hyun Kim. 2007. In vitro and in vivo antiallergic effects of Glycyrrhiza glabra and its components. Planta Medica 73 (03): 257–261.CrossRefPubMedGoogle Scholar
  31. 31.
    Dorhoi, A., V. Dobrean, M. Zăhan, and P. Virag. 2006. Modulatory effects of several herbal extracts on avian peripheral blood cell immune responses. Phytotherapy Research 20 (5): 352–358.CrossRefPubMedGoogle Scholar
  32. 32.
    Wu, Q., Y. Tang, X. Hu, Q. Wang, W. Lei, L. Zhou, and J. Huang. 2016. Regulation of Th1/Th2 balance through OX40/OX40L signalling by glycyrrhizic acid in a murine model of asthma. Respirology 21 (1): 102–111.CrossRefPubMedGoogle Scholar
  33. 33.
    Leynaert, B., C. Neukirch, R. Liard, J. Bousquet, and F. Neukirch. 2000. Quality of life in allergic rhinitis and asthma. A population-based study of young adults. American Journal of Respiratory and Critical Care Medicine 162 (4 Pt 1): 1391–1396.CrossRefPubMedGoogle Scholar
  34. 34.
    Dousti, M., M.H. Ramchandani, A. Barkhordarian, S. Danaei, and F. Chiappelli. 2012. Evidence-based traditional Persian medicine. In Evidence-based practice in complementary and alternative medicine, 79–96. Berlin, Heidelberg: Springer.Google Scholar
  35. 35.
    Huang, T.P., P.H. Liu, A.S. Lien, S.L. Yang, H.H. Chang, and H.R. Yen. 2013. Characteristics of traditional Chinese medicine use in children with asthma: a nationwide population-based study. Allergy 68 (12): 1610–1613.CrossRefPubMedGoogle Scholar
  36. 36.
    Clark, C.E., E. Arnold, T.J. Lasserson, and T. Wu. 2010. Herbal interventions for chronic asthma in adults and children: a systematic review and meta-analysis. Primary Care Respiratory Journal 19 (4): 307–314.CrossRefPubMedGoogle Scholar
  37. 37.
    Yang, R., B.C. Yuan, Y.S. Ma, S. Zhou, and Y. Liu. 2017. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharmaceutical Biology 55 (1): 5–18. Google Scholar
  38. 38.
    Luckheeram, R.V., R. Zhou, A.D. Verma, and B. Xia. 2012. CD4(+)T cells: differentiation and functions. Clinical and Developmental Immunology 2012: 925135.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wambre, E., E.A. James, and W.W. Kwok. 2012. Characterization of CD4+ T cell subsets in allergy. Current Opinion in Immunology 24 (6): 700–706.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang, H., H. Kong, X. Zeng, L. Guo, X. Sun, and S. He. 2014. Subsets of regulatory T cells and their roles in allergy. Journal of Translational Medicine 12: 125.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Han, S., L. Sun, F. He, and H. Che. 2017. Anti-allergic activity of glycyrrhizic acid on IgE-mediated allergic reaction by regulation of allergy-related immune cells. Scientific Reports 7 (1): 7222.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ram, Arjun, U. Mabalirajan, Moumita Das, Indranil Bhattacharya, Amit K. Dinda, Sharad V. Gangal, and Balaram Ghosh. 2006. Glycyrrhizin alleviates experimental allergic asthma in mice. International Immunopharmacology 6 (9): 1468–1477.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim, Seung-Hyung, Jung-hee Hong, Ji-Eun Lee, and Young-Cheol Lee. 2017. 18β-Glycyrrhetinic acid, the major bioactive component of glycyrrhizae radix, attenuates airway inflammation by modulating Th2 cytokines, GATA-3, STAT6, and Foxp3 transcription factors in an asthmatic mouse model. Environmental Toxicology and Pharmacology 52: 99–113.CrossRefPubMedGoogle Scholar
  44. 44.
    Yang, Nan, Sangita Patil, Jian Zhuge, Ming-Chun Wen, Jayaprakasam Bolleddula, Srinivasulu Doddaga, Joseph Goldfarb, Hugh A. Sampson, and Xiu-Min Li. 2013. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMITM, inhibit memory Th2 responses in vitro and in vivo. Phytotherapy Research 27 (9): 1381–1391.CrossRefPubMedGoogle Scholar
  45. 45.
    Li, Xiu-Min. 2011. Treatment of asthma and food allergy with herbal interventions from traditional Chinese medicine. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine 78 (5): 697–716.CrossRefGoogle Scholar
  46. 46.
    Patil, S.P., W.J. Ji, A. Singha, D.E. Hendricks, P.J. Busse, H.A. Sampson, J.P. Wisnivesky, and X. Li. 2010. In vitro immunomodulatory effect of ASHMI (anti-asthma herbal medicine intervention) on PBMCs from asthmatics. Journal of Allergy and Clinical Immunology 125 (2): AB198.CrossRefGoogle Scholar
  47. 47.
    Chunhua, Ma, Zhanqiang Ma, Xiao-lin Liao, Jiping Liu, Qiang Fu, and Shiping Ma. 2013. Immunoregulatory effects of glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/Th2 cytokines and enhancement of CD4+ CD25+ Foxp3+ regulatory T cells in ovalbumin-sensitized mice. Journal of Ethnopharmacology 148 (3): 755–762.CrossRefGoogle Scholar
  48. 48.
    Martín-Orozco, Elena, María Norte-Muñoz, and Javier Martínez-García. 2017. Regulatory T cells in allergy and asthma. Frontiers in Pediatrics 5: 117.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Coomes, S.M., Y. Kannan, V.S. Pelly, L.J. Entwistle, R. Guidi, J. Perez-Lloret, N. Nikolov, W. Müller, and M.S. Wilson. 2017. CD4+ Th2 cells are directly regulated by IL-10 during allergic airway inflammation. Mucosal Immunology 10 (1): 150–161.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Saloomeh Fouladi
    • 1
  • Mohsen Masjedi
    • 1
  • Ramin Ghasemi
    • 1
  • Mazdak G. Hakemi
    • 1
  • Nahid Eskandari
    • 1
    • 2
  1. 1.Department of Immunology, Faculty of MedicineIsfahan University of Medical SciencesIsfahanIran
  2. 2.Applied Physiology Research CenterIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations