Advertisement

Inflammation

, Volume 41, Issue 4, pp 1372–1383 | Cite as

ERK1/2 and the Bcl-2 Family Proteins Mcl-1, tBid, and Bim Are Involved in Inhibition of Apoptosis During Persistent Chlamydia psittaci Infection

  • Li Li
  • Chuan Wang
  • Yating Wen
  • Yuming Hu
  • Yafeng Xie
  • Man Xu
  • Mingxing Liang
  • Wei Liu
  • Liangzhuan Liu
  • Yimou WuEmail author
ORIGINAL ARTICLE

Abstract

Chlamydia psittaci is an obligate intracellular pathogen that can cause zoonosis. Persistent C. psittaci infection can inhibit apoptosis in host cells, thus extending their survival and enabling them to complete their growth cycle. In this study, the antiapoptotic effects of persistent C. psittaci infection, induced by treatment with IFN-γ, were found to be associated with both the death receptor and the mitochondrial pathways of apoptosis. These effects were mediated by Bcl-2 family members, as evidenced by the decreased expression of proapoptotic proteins, such as tBid and Bim. Simultaneously, the antiapoptotic protein Mcl-1 was upregulated by persistent C. psittaci infection. Increased phosphorylation of ERK1/2 was observed; however, the expression of Bad, unlike that of other proapoptotic proteins, did not seem to be involved in this process. In summary, persistent chlamydial infection exerts antiapoptotic effects through both the death receptor and the mitochondrial pathways, in a process that is regulated by the ERK1/2 and apoptotic proteins of the Bcl-2 family.

KEY WORDS

apoptosis Chlamydia psittaci persistent infection Bcl-2 family proteins IFN-γ 

ABBREVIATIONS

Bak

Bcl-2 antagonist killer

Bax

Bcl-2 associated X

Bcl-2

B-cell leukemia/lymphoma 2

Bid

BH3 interacting domain death agonist

CCCP

Carbonyl cyanide 3-chlorophenylhydrazone

C. psittaci

Chlamydia psittaci

EB

Elementary body

FADD

Fas-associated protein with death domain

Mcl-1

Myeloid cell leukemia-1

MOI

Multiplicity of infection

PBS

Phosphate-buffered saline

p-ERK1/2

Phosphorylation of ERK1/2

Puma

P53 upregulated modulator of apoptosis

PVDF

Polyvinylidene difluoride

p90RSK

90-kDa ribosomal S6 kinase

rhIFN-γ

Recombinant human gamma interferon

SDS

Sodium dodecyl sulfate

STS

Staurosporine

Notes

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 31270218 and 31300156), the Special Foundation of Hunan Provincial Science and Technology Department (grant no. 2013TT1003), and the Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control Foundation (grant nos. 2014-5 and 2012-312).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

REFERENCES

  1. 1.
    Buchacher, T., A. Ohradanova-Repic, H. Stockinger, M.B. Fischer, and V. Weber. 2015. M2 polarization of human macrophages favors survival of the intracellular pathogen chlamydia pneumoniae. PLoS One 10 (11): e0143593.  https://doi.org/10.1371/journal.pone.0143593.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wu, H., C. Wang, C. Jiang, Y. Xie, L. Liu, Y. Song, X. Ma, and Y. Wu. 2016. Localization and characterization of two putative TMH family proteins in Chlamydia psittaci. Microbiological Research 183: 19–25.  https://doi.org/10.1016/j.micres.2015.11.005.CrossRefPubMedGoogle Scholar
  3. 3.
    Nans, A., C. Ford, and R.D. Hayward. 2015. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis. Microbes and Infection 17 (11–12): 727–731.  https://doi.org/10.1016/j.micinf.2015.08.004.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rodel, J., C. Grosse, H. Yu, K. Wolf, G.P. Otto, E. Liebler-Tenorio, V. Forsbach-Birk, and E. Straube. 2012. Persistent Chlamydia trachomatis infection of HeLa cells mediates apoptosis resistance through a Chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release. Infection and Immunity 80 (1): 195–205.  https://doi.org/10.1128/IAI.05619-11.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Witkin, S.S., E. Minis, A. Athanasiou, J. Leizer, and I.M. Linhares. 2017. Chlamydia trachomatis: The persistent pathogen. Clinical and Vaccine Immunology 24 (10): e00203–e00217.  https://doi.org/10.1128/CVI.00203-17.CrossRefPubMedGoogle Scholar
  6. 6.
    Morrison, R.P. 2003. New insights into a persistent problem—Chlamydial infections. The Journal of Clinical Investigation 111 (11): 1647–1649.  https://doi.org/10.1172/JCI18770.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jerchel, S., I. Kaufhold, L. Schuchardt, K. Shima, and J. Rupp. 2014. Host immune responses after hypoxic reactivation of IFN-gamma induced persistent Chlamydia trachomatis infection. Frontiers in Cellular and Infection Microbiology 4: 43.  https://doi.org/10.3389/fcimb.2014.00043.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen, Z., L. Chen, C. Wang, J. Yu, Q. Bai, M. Yu, Y. Song, Y. Hu, and Y. Wu. 2017. Transcription of seven genes in a model of interferongamma-induced persistent Chlamydia psittaci infection. Molecular Medicine Reports 16 (4): 4835–4842.  https://doi.org/10.3892/mmr.2017.7133.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhong, Y., M. Weininger, M. Pirbhai, F. Dong, and G. Zhong. 2006. Inhibition of staurosporine-induced activation of the proapoptotic multidomain Bcl-2 proteins Bax and Bak by three invasive chlamydial species. The Journal of Infection 53 (6): 408–414.  https://doi.org/10.1016/j.jinf.2005.12.028.CrossRefPubMedGoogle Scholar
  10. 10.
    Duus, K., R.T. Pagh, U. Holmskov, P. Hojrup, S. Skov, and G. Houen. 2007. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand. Scandinavian Journal of Immunology 66 (5): 501–507.  https://doi.org/10.1111/j.1365-3083.2007.01999.x.CrossRefPubMedGoogle Scholar
  11. 11.
    Li, M.X., and G. Dewson. 2015. Mitochondria and apoptosis: Emerging concepts. F1000Prime Rep 7: 42.  https://doi.org/10.12703/P7-42. PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hollville, E., R.G. Carroll, S.P. Cullen, and S.J. Martin. 2014. Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Molecular Cell 55 (3): 451–466.  https://doi.org/10.1016/j.molcel.2014.06.001.CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang, X., H. Jiang, Z. Shen, and X. Wang. 2014. Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proceedings of the National Academy of Sciences of the United States of America 111 (41): 14782–14787.  https://doi.org/10.1073/pnas.1417253111.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Weiser, B.P., R. Salari, R.G. Eckenhoff, and G. Brannigan. 2014. Computational investigation of cholesterol binding sites on mitochondrial VDAC. The Journal of Physical Chemistry. B 118 (33): 9852–9860.  https://doi.org/10.1021/jp504516a.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Waterhouse, N.J., J.C. Goldstein, O. von Ahsen, M. Schuler, D.D. Newmeyer, and D.R. Green. 2001. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. The Journal of Cell Biology 153 (2): 319–328.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mondal, A., R. Biswas, Y.H. Rhee, J. Kim, and J.C. Ahn. 2016. Sulforaphene promotes Bax/Bcl2, MAPK-dependent human gastric cancer AGS cells apoptosis and inhibits migration via EGFR, p-ERK1/2 down-regulation. General Physiology and Biophysics 35 (1): 25–34.  https://doi.org/10.4149/gpb_2015033. PubMedCrossRefGoogle Scholar
  17. 17.
    Sharma, M., N. Machuy, L. Bohme, K. Karunakaran, A.P. Maurer, T.F. Meyer, and T. Rudel. 2011. HIF-1alpha is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells. Cellular Microbiology 13 (10): 1573–1585.  https://doi.org/10.1111/j.1462-5822.2011.01642.x.CrossRefPubMedGoogle Scholar
  18. 18.
    Kun, D., C. Xiang-Lin, Z. Ming, and L. Qi. 2013. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis 18 (9): 1083–1092.  https://doi.org/10.1007/s10495-013-0865-z.CrossRefPubMedGoogle Scholar
  19. 19.
    Sakamaki, K., K. Imai, K. Tomii, and D.J. Miller. 2015. Evolutionary analyses of caspase-8 and its paralogs: Deep origins of the apoptotic signaling pathways. BioEssays 37 (7): 767–776.  https://doi.org/10.1002/bies.201500010.CrossRefPubMedGoogle Scholar
  20. 20.
    Frank, D.O., J. Dengjel, F. Wilfling, V. Kozjak-Pavlovic, G. Hacker, and A. Weber. 2015. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM). PLoS One 10 (4): e0123341.  https://doi.org/10.1371/journal.pone.0123341.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hu, Y., L. Chen, C. Wang, Y. Xie, Z. Chen, L. Liu, Z. Su, and Y. Wu. 2015. Transcriptional analysis of 10 selected genes in a model of penicillin G induced persistence of Chlamydophila psittaci in HeLa cells. Journal of Microbiology and Biotechnology 25 (8): 1246–1256.  https://doi.org/10.4014/jmb.1502.02031.CrossRefPubMedGoogle Scholar
  22. 22.
    Du, K., Q. Zheng, M. Zhou, L. Zhu, B. Ai, and L. Zhou. 2011. Chlamydial antiapoptotic activity involves activation of the Raf/MEK/ERK survival pathway. Current Microbiology 63 (4): 341–346.  https://doi.org/10.1007/s00284-011-9985-2.CrossRefPubMedGoogle Scholar
  23. 23.
    Fischer, S.F., T. Harlander, J. Vier, and G. Hacker. 2004. Protection against CD95-induced apoptosis by chlamydial infection at a mitochondrial step. Infection and Immunity 72 (2): 1107–1115.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jana, K., N. Jana, D.K. De, and S.K. Guha. 2010. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion. Molecular Reproduction and Development 77 (9): 820–833.  https://doi.org/10.1002/mrd.21227.CrossRefPubMedGoogle Scholar
  25. 25.
    Hutt, K.J. 2015. The role of BH3-only proteins in apoptosis within the ovary. Reproduction 149 (2): R81–R89.  https://doi.org/10.1530/REP-14-0422. CrossRefPubMedGoogle Scholar
  26. 26.
    Masson, F., F. Kupresanin, A. Mount, A. Strasser, and G.T. Belz. 2011. Bid and Bim collaborate during induction of T cell death in persistent infection. Journal of Immunology 186 (7): 4059–4066.  https://doi.org/10.4049/jimmunol.1001918.CrossRefGoogle Scholar
  27. 27.
    Redgrove, K.A., and E.A. McLaughlin. 2014. The role of the immune response in Chlamydia trachomatis infection of the male genital tract: A double-edged sword. Frontiers in Immunology 5: 534.  https://doi.org/10.3389/fimmu.2014.00534.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bernardi, P., A. Rasola, M. Forte, and G. Lippe. 2015. The mitochondrial permeability transition pore: Channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiological Reviews 95 (4): 1111–1155.  https://doi.org/10.1152/physrev.00001.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Green, D.R., and J.C. Reed. 1998. Mitochondria and apoptosis. Science 281 (5381): 1309–1312.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim, S.Y., S.E. Park, S.M. Shim, S. Park, K.K. Kim, S.Y. Jeong, E.K. Choi, J.J. Hwang, D.H. Jin, C.D. Chung, and I. Kim. 2015. Bay 61-3606 sensitizes TRAIL-induced apoptosis by downregulating Mcl-1 in breast cancer cells. PLoS One 10 (12): e0146073.  https://doi.org/10.1371/journal.pone.0146073.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ying, S., J.G. Christian, S.A. Paschen, and G. Hacker. 2008. Chlamydia trachomatis can protect host cells against apoptosis in the absence of cellular inhibitor of apoptosis proteins and Mcl-1. Microbes and Infection 10 (1): 97–101.  https://doi.org/10.1016/j.micinf.2007.10.005.CrossRefPubMedGoogle Scholar
  32. 32.
    Yancey, D., K.C. Nelson, D. Baiz, S. Hassan, A. Flores, A. Pullikuth, Y. Karpova, L. Axanova, V. Moore, G. Sui, and G. Kulik. 2013. BAD dephosphorylation and decreased expression of MCL-1 induce rapid apoptosis in prostate cancer cells. PLoS One 8 (9): e74561.  https://doi.org/10.1371/journal.pone.0074561.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Verbeke, P., L. Welter-Stahl, S. Ying, J. Hansen, G. Hacker, T. Darville, and D.M. Ojcius. 2006. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathogens 2 (5): e45.  https://doi.org/10.1371/journal.ppat.0020045.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang, H.G., N. Pathan, I.M. Ethell, S. Krajewski, Y. Yamaguchi, F. Shibasaki, F. McKeon, T. Bobo, T.F. Franke, and J.C. Reed. 1999. Ca2+−induced apoptosis through calcineurin dephosphorylation of BAD. Science 284 (5412): 339–343.CrossRefPubMedGoogle Scholar
  35. 35.
    Kawanishi, M. 1997. Epstein-Barr virus BHRF1 protein protects intestine 407 epithelial cells from apoptosis induced by tumor necrosis factor alpha and anti-Fas antibody. Journal of Virology 71 (4): 3319–3322.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Majeed, M., K.H. Krause, R.A. Clark, E. Kihlstrom, and O. Stendahl. 1999. Localization of intracellular Ca2+ stores in HeLa cells during infection with Chlamydia trachomatis. Journal of Cell Science 112 (Pt 1): 35–44.PubMedGoogle Scholar
  37. 37.
    Al-Younes, H.M., V. Brinkmann, and T.F. Meyer. 2004. Interaction of chlamydia trachomatis serovar L2 with the host autophagic pathway. Infection and Immunity 72 (8): 4751–4762.  https://doi.org/10.1128/IAI.72.8.4751-4762.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Clifton, D.R., K.A. Fields, S.S. Grieshaber, C.A. Dooley, E.R. Fischer, D.J. Mead, R.A. Carabeo, and T. Hackstadt. 2004. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proceedings of the National Academy of Sciences of the United States of America 101 (27): 10166–10171.  https://doi.org/10.1073/pnas.0402829101. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Baumgartner, H.K., J.V. Gerasimenko, C. Thorne, P. Ferdek, T. Pozzan, A.V. Tepikin, O.H. Petersen, R. Sutton, A.J. Watson, and O.V. Gerasimenko. 2009. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. The Journal of Biological Chemistry 284 (31): 20796–20803.  https://doi.org/10.1074/jbc.M109.025353.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sun, Y., W.Z. Liu, T. Liu, X. Feng, N. Yang, and H.F. Zhou. 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptor and Signal Transduction Research 35 (6): 600–604.  https://doi.org/10.3109/10799893.2015.1030412.CrossRefPubMedGoogle Scholar
  41. 41.
    Liu, G.L., R.P. Parti, and J.A. Dillon. 2015. Suppression of ERK activation in urethral epithelial cells infected with Neisseria gonorrhoeae and its isogenic minD mutant contributes to anti-apoptosis. Microbes and Infection 17 (4): 317–322.  https://doi.org/10.1016/j.micinf.2014.12.012.CrossRefPubMedGoogle Scholar
  42. 42.
    Loucks, F.A., S.S. Le, A.K. Zimmermann, K.R. Ryan, H. Barth, K. Aktories, and D.A. Linseman. 2006. Rho family GTPase inhibition reveals opposing effects of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and Janus kinase/signal transducer and activator of transcription signaling cascades on neuronal survival. Journal of Neurochemistry 97 (4): 957–967.  https://doi.org/10.1111/j.1471-4159.2006.03802.x.CrossRefPubMedGoogle Scholar
  43. 43.
    Cheng, C.Y., J.G. Lin, N.Y. Tang, S.T. Kao, and C.L. Hsieh. 2014. Electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints protects rats against subacute-phase cerebral ischemia-reperfusion injuries by reducing S100B-mediated neurotoxicity. PLoS One 9 (3): e91426.  https://doi.org/10.1371/journal.pone.0091426.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hafeez, S., M. Urooj, S. Saleem, Z. Gillani, S. Shaheen, M.H. Qazi, M.I. Naseer, Z. Iqbal, S.A. Ansari, A. Haque, M. Asif, M.A. Mir, A. Ali, P.N. Pushparaj, M.S. Jamal, and M. Rasool. 2016. BAD, a proapoptotic protein, escapes ERK/RSK phosphorylation in deguelin and siRNA-treated HeLa cells. PLoS One 11 (1): e0145780.  https://doi.org/10.1371/journal.pone.0145780.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Li Li
    • 1
    • 2
  • Chuan Wang
    • 1
  • Yating Wen
    • 1
  • Yuming Hu
    • 2
  • Yafeng Xie
    • 1
  • Man Xu
    • 1
  • Mingxing Liang
    • 1
  • Wei Liu
    • 1
  • Liangzhuan Liu
    • 1
  • Yimou Wu
    • 1
    Email author
  1. 1.Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Medical CollegeUniversity of South China, Hengyang, China; and Hunan Province Cooperative Innovation Center for Molecular Target New Drug StudyHengyangChina
  2. 2.Hunan Provincial Center for Disease Control and PreventionChangshaChina

Personalised recommendations