, Volume 41, Issue 4, pp 1349–1360 | Cite as

Salicytamide: a New Anti-inflammatory Designed Drug Candidate

  • Karen Marinho Maciel Guedes
  • Rosivaldo Santos Borges
  • Enéas Andrade Fontes-Júnior
  • Andressa Santa Brigida Silva
  • Luanna Melo Pereira Fernandes
  • Sabrina Carvalho Cartágenes
  • Ana Carla Godinho Pinto
  • Mallone Lopes Silva
  • Luana Melo Diogo Queiroz
  • José Luís Fernandes Vieira
  • Pergentino José Cunha Sousa
  • Cristiane Socorro Ferraz MaiaEmail author


Salicytamide is a new drug developed through molecular modelling and rational drug design by the molecular association of paracetamol and salicylic acid. This study was conducted to assess the acute oral toxicity, antinociceptive, and antioedematogenic properties of salicytamide. Acute toxicity was based on the OECD 423 guidelines. Antinociceptive properties were investigated using the writhing, hot plate and formalin tests in Swiss mice. Antioedematogenic properties were evaluated using the carrageenan-induced paw oedema model and croton oil-induced dermatitis in Wistar rats. Salicytamide did not promote behavioural changes or animal deaths during acute oral toxicity evaluation. Furthermore, salicytamide exhibited peripheral antinociceptive activity as evidenced by the reduction in writhing behaviour (ED50 = 4.95 mg/kg) and licking time in the formalin test’s inflammatory phase. Also, salicytamide elicited central antinociceptive activity on both hot plate test and formalin test’s neurogenic phase. Additionally, salicytamide was effective in reducing carrageenan or croton oil-induced oedema formation. Overall, we have shown that salicytamide, proposed here as a new NSAID candidate, did not induce oral acute toxicity and elicited both peripheral antinociceptive effects (about 10–25 times more potent than its precursors in the writhing test) and antioedematogenic properties. Salicytamide also presented central antinociceptive activity, which seems to be mediated through opioid-independent mechanisms. These findings reveal salicytamide as a promising antinociceptive/antioedematogenic drug candidate.


antinociception antioedematogenic paracetamol acetylsalicylic acid salicytamide 



KMMG and SCC were supported by a Brazilian Government/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) fellowship. RSB is supported by a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Funding information

We would like to thank the Pró-Reitoria de Pesquisa e Pós-Graduação (PROPESP/UFPA) for providing financial support (PAPQ).

Compliance with Ethical Standards

All procedures were approved by the Ethics Committee on Experimental Animals of the Federal University of Pará under license number FAR 001-10-CEPAE/UFPA. The number of animals and the intensity of noxious stimuli were standardized according to the ethical guidelines for the investigation of experimental pain in conscious animals (Zimmermann, 1983) and the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines [18].

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fortuny, J., D. Silvermanb, N. Malatsa, A. Tardónc, R. García-Closasd, C. Serrae, et al. 2005. Uso de analgésicos y ácido acetilsalicílico en un estudio multicéntrico en España. Gaceta Sanitaria 19: 316–320.CrossRefPubMedGoogle Scholar
  2. 2.
    Manoukian, A.V., and J.L. Carson. 1996. Nonsteroidal anti-inflammatory drug-induced hepatic disorders: incidence and prevention. Drug Safety 15: 64–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Mcgettigan, P., and D. Hanry. 2013. Use of non-steroidal anti-inflammatory drugs that elevate cardiovascular risk: an examination of sales and essential medicines lists in low-, middle-, and high-income countries. PLoS Medicine 10: e1001388.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Coudray, C., and A. Favier. 2000. Determination of salicylate hydroxylation products as an in vivo oxidative stress marker. Free Radical Biology & Medicine 29: 1064–1070.CrossRefGoogle Scholar
  5. 5.
    Duthie, G.G., and A.D. Wood. 2001. Natural salicylates: foods, functions and disease prevention. Food & Function 2: 515–520.CrossRefGoogle Scholar
  6. 6.
    Weissman, G. 1991. Aspirin. Scientific American 264: 84–90.CrossRefGoogle Scholar
  7. 7.
    Kaufman, D.W., J.P. Kelly, L. Rosenberg, T.E. Anderson, and A.A. Mitchell. 2002. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA 287: 337–344.CrossRefPubMedGoogle Scholar
  8. 8.
    Prescott, L.F. 2000. Paracetamol: past, present, and future. American Journal of Therapeutics 7: 143–147.CrossRefPubMedGoogle Scholar
  9. 9.
    Shafiei, H., M. Haqgu, D. Nematollahi, and M.R. Gholami. 2008. An experimental and computational study on the rate constant of electrochemically generated n-acetyl-p-quinoneimine with dimethylamine. International Journal of Electrochemical Science 3: 1092–1107.Google Scholar
  10. 10.
    Clark, W.G. 1997. Antipyretic therapy clinical trials 1990 through 1995. In Fever: basic mechanisms and management, 2nd ed., 295–302. Philadelphia: Lippincott-Raven.Google Scholar
  11. 11.
    D’Agati, V. 1996. Does aspirin cause acute or chronic renal failure in experimental animals and humans? American Journal of Kidney Diseases 28: 24–29.CrossRefGoogle Scholar
  12. 12.
    Linakis, J.G., and F.H. Lovejoy Jr. 1992. Antipyretics. In Pediatric pharmacology: the therapeutic principles in practice, 2nd ed., 335–344. Philadelphia: Saunders.Google Scholar
  13. 13.
    Bock, K.W., A. Forster, H. Gschaidmeier, M. Brück, P. Münzel, W. Schareck, S. Fournel-Gigleux, and B. Burchell. 1993. Paracetamol glucuronidation by recombinant rat and human phenol UDP-glucuronosyltransferases. Biochemical Pharmacology 45: 1809–1814.CrossRefPubMedGoogle Scholar
  14. 14.
    Graham, G.G., R.O. Day, M.K. Milligan, J.B. Ziegler, and A.J. Kettle. 1999. Current concepts of the actions of paracetamol (acetaminophen) and NSAIDs. Inflammopharmacology 7: 255–263.CrossRefPubMedGoogle Scholar
  15. 15.
    James, L., R. Mayeux, and J. Hinson. 2003. Acetaminophen-induced hepatotoxicity. Drug Metabolism and Disposition 31: 1499–1506.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee, W. 2004. Acetaminophen and the U.S. Acute Liver Failure Study Group: lowering the risks of hepatic failure. Hepatology 40: 6–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Borges, R.S., G.A.N. Pereira, J.K.L. Vale, L.C.S. França, M.C. Monteiro, C.N. Alves, and A.B.F. da Silva. 2013. Design and evaluation of 4-aminophenol and salicylate derivatives as free-radical scavenger. Chemical Biology & Drug Design 81: 414–419.CrossRefGoogle Scholar
  18. 18.
    Kilkenny, C., W.J. Browne, I.C. Cuthill, M. Emerson, and D.G. Altman. 2010. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biology 8 (6): e1000412.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vivas, L.A.M., N. Jamel, R.A. Refinetti, L.F. da Silva, L.V. Rodrigues, P.C. Silva, and A. Schanaider. 2007. Anesthetic experimental device for small animal. Acta Cirúrgica Brasileira 22 (3): 229–233.CrossRefPubMedGoogle Scholar
  20. 20.
    OECD. OECD guideline for testing of chemicals: acute oral toxicity—acute toxic class method. [Online] NHI Publication. Available: Accessed 17th July 2015, 2001.
  21. 21.
    Malone, M.H., and R.C. Robichaud. 1962. A hippocratic screen for pure or crude drug materials. Lloydia 25: 320–332.Google Scholar
  22. 22.
    Koster, R., M. Anderson, and E.J.M. Debeer. 1959. Acetic acid for analgesic screening. Federation Proceedings 18: 412.Google Scholar
  23. 23.
    Macdonald, A.D., G. Woolfe, F. Bergel, A.L. Morrison, H. Rinderknecht, et al. 1946. Analgesic action of pethidine derivatives and related compounds. British Journal of Pharmacology 1: 4–14.Google Scholar
  24. 24.
    Hunskaar, S., O.B. Fasmer, and K. Hole. 1985. Formalin test in mice, a useful technique for evaluating mild analgesics. Journal of Neuroscience Methods 14: 69–76.CrossRefPubMedGoogle Scholar
  25. 25.
    Winter, C.A., E.A. Risely, and G.W. Nuss. 1962. Carrageenan-induced edema in the hind paw of the rat as an assay for anti-inflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine 111: 544–547.CrossRefPubMedGoogle Scholar
  26. 26.
    Tubaro, A., P. Dri, G. Delbello, C. Zilli, and R. Della Loggia. 1985. The croton oil ear test revisited. Agents and Actions 17: 347–349.CrossRefGoogle Scholar
  27. 27.
    Faculté de biologie et de medicine, Université de Lausanne—Unil. 2009. Aspirin pharmacokinetics. [Accessed on May 18, 2017]. Available in:
  28. 28.
    Deraedt, R., S. Jouquey, F. Delevallee, and M. Flahaut. 1980. Release of prostaglandins E and F in an algogenic reaction and its inhibition. European Journal of Pharmacology 61: 17–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Martindale, J., P.A. Bland-Ward, and I.P. Chessell. 2001. Inhibition of C-fibre mediated sensory transmission in the rat following intraplantar formalin. Neuroscience Letters 316: 33–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Drower, E.J., A. Stapelfeld, R.A. Mueller, and D.J. Hammond. 1987. The antinociceptive effects of prostaglandin antagonists in the rat. European Journal of Pharmacology 133: 249–256.CrossRefPubMedGoogle Scholar
  31. 31.
    Miranda, H.A., M.M.B. Puig, J.C.A. Prieto, and G. Pinardi. 2006. Synergism between paracetamol and nonsteroidal anti-inflammatory drugs in experimental acute pain. Pain 121: 22–28.CrossRefPubMedGoogle Scholar
  32. 32.
    Qiu, H., J. Liu, H. Kong, Y. Liu, and X. Mei. 2007. Isobolographic analysis of the antinociceptive interactions between ketoprofen and paracetamol. European Journal of Pharmacology 557: 141–146.CrossRefPubMedGoogle Scholar
  33. 33.
    Abbott, F.V., and K.G. Hellemans. 2000. Phenacetin, acetaminophen and dipyrone: analgesic and rewarding effects. Behavioural Brain Research 112: 177–186.CrossRefPubMedGoogle Scholar
  34. 34.
    Seong-soo, C., J. Lee, and H. Suh. 2001. Antinociceptive profiles of aspirin and acetaminophen in formalin, substance P and glutamate pain models. Brain Research 921: 233–239.CrossRefGoogle Scholar
  35. 35.
    Guilhon, K.C., L.J.R.P. Raymundo, D.S. Alviano, A.F. Blankc, M.F. Arrigoni-Blank, M.E. Matheus, et al. 2011. Characterization of the anti-inflammatory and antinociceptive activities and the mechanism of the action of Lippia gracilis essential oil. Journal of Ethnopharmacology 135: 406–413.CrossRefPubMedGoogle Scholar
  36. 36.
    Le Bars, D., M. Gozariu, and S.W. Cadden. 2001. Animal models of nociception. Pharmacological Reviews 53: 597–652.PubMedGoogle Scholar
  37. 37.
    Sandrini, M., A. Ottani, Vitale, and L. Pini. 1998. Acetylsalicylic acid potentiates the antinociceptive effect of morphine in the rat: involvement of the central serotonergic system. European Journal of Pharmacology 355: 133–140.CrossRefPubMedGoogle Scholar
  38. 38.
    Bertolini, A., A. Ferrari, A. Ottani, S. Guerzoni, R. Tacchi, and S. Leone. 2006. Paracetamol: new vistas of an old drug. CNS Drug Reviews 12: 250–275.CrossRefPubMedGoogle Scholar
  39. 39.
    Ruggieri, V.A., G.A. Vitale, M. Filaferro, C. Frigeri, L.A. Pini, and M. Sandrini. 2010. The antinociceptive effect of acetylsalicylic acid is differently affected by a CB1 agonist or antagonist and involves the serotonergic system in rats. Life Sciences 86: 510–517.CrossRefPubMedGoogle Scholar
  40. 40.
    Di Rosa, M., J.P. Giroud, and D.A. Willoughby. 1971. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. The Journal of Pathology 104: 15–28.CrossRefPubMedGoogle Scholar
  41. 41.
    Miño, J., V. Moscatelli, O. Hnatyszyn, S. Gorzalczany, C. Acevedo, and G. Ferraro. 2004. Antinociceptive and antiinflammatory activities of Artemisia copa extracts. Pharmacological Research 50: 59–63.CrossRefPubMedGoogle Scholar
  42. 42.
    Al-Swayeh, A., E. Futter, H. Clifford, and K. Moore. 2000. Nitroparacetamol exhibits anti-inflammatory and antinociceptive activity. British Journal of Pharmacology 130: 1453–1456.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Menezes-De-Lima, O.J.R., C.A. Kassuya, A.F. Nascimento, M.D. Henriques, and J.B. Calixto. 2006. Lipoxin A4 inhibits acute edema in mice: implications for the anti-edematogenic mechanism induced by aspirin. Prostaglandins & Other Lipid Mediators 80: 123–135.CrossRefGoogle Scholar
  44. 44.
    Tang, S.Y., M. Sivakumar, A.M. Ng, and P. Shridharan. 2012. Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation. International Journal of Pharmaceutics 430: 299–306.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Karen Marinho Maciel Guedes
    • 1
  • Rosivaldo Santos Borges
    • 2
  • Enéas Andrade Fontes-Júnior
    • 1
    • 3
  • Andressa Santa Brigida Silva
    • 1
  • Luanna Melo Pereira Fernandes
    • 3
  • Sabrina Carvalho Cartágenes
    • 3
  • Ana Carla Godinho Pinto
    • 4
  • Mallone Lopes Silva
    • 3
  • Luana Melo Diogo Queiroz
    • 1
  • José Luís Fernandes Vieira
    • 1
  • Pergentino José Cunha Sousa
    • 3
  • Cristiane Socorro Ferraz Maia
    • 1
    • 3
    Email author
  1. 1.Programa de Pós-Graduação em Ciências Farmacêuticas, Instituto de Ciências da Saúde, Health Science InstituteFederal University of ParáBelemBrazil
  2. 2.Pharmaceutic Chemical Laboratory, Health Science InstituteFederal University of ParáBelemBrazil
  3. 3.Laboratory of Inflammation and Behaviour Pharmacology, Health Science InstituteFederal University of ParáBelemBrazil
  4. 4.Laboratory of Toxicology, Health Science InstituteFederal University of ParáBelemBrazil

Personalised recommendations