MiR-548a-3p Promotes Keratinocyte Proliferation Targeting PPP3R1 after Being Induced by IL-22

  • Xintong Zhao
  • Ronghua Li
  • Meng Qiao
  • Jianjun Yan
  • Qing Sun


Psoriasis is an immune-mediated chronic skin disorder where T cells play a main role, and numerous inflammatory cytokines are implicated in its pathogenesis by initiating keratinocyte proliferation. Interleukin-22 (IL-22), an IL-10 family cytokines, is critical in the pathogenesis and development of psoriasis. To determine the target of microRNA (miR) -548a-3p and investigate its role in keratinocyte proliferation after treating human keratinocytes (HaCaT) with IL-22, we used quantitative reverse transcriptase PCR to measure the expression of miR-548a-3p in both HaCaT cells stimulated with IL-22 and psoriatic lesions, and then detected the biological function of miR-548a-3p in HaCaT cells by performing Counting Kit-8 (CCK-8) assays. Luciferase reporter assay was conducted to determine the target gene of miR-548a-3p. Immunohistochemistry and Western blot were performed to verify the target gene. Results showed that miR-548a-3p was significantly upregulated both in HaCaT cells treated with IL-22 and psoriatic lesions. The over expression of miR-548a-3p could promote the proliferation of HaCaT cells. Luciferase was mutated in the 3’UTR of PPP3R1, a gene coding Calcineurin. Immunohistochemistry and Western blot demonstrated that the expression of PPP3R1 decreased respectively in psoriatic lesions and HaCaT cells. In conclusion, the expression of miR-548a-3p is upregulated in IL-22 mediated keratinocyte proliferative disorder like psoriasis. The impact of miR-548a-3p on keratinocyte proliferation may be implemented by targeting PPP3R1 and T regulatory cells may be involved in the pathogenesis of psoriasis.


psoriasis IL-22 miR-548a-3p PPP3R1 



We deeply appreciate all psoriasis patients and control subjects for their participation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The research was approved by the Ethics Committee of Shandong University, China, and was accordant with the 1964 Helsinki Declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Chandran, V., and S.P. Raychaudhuri. 2010. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. Journal of Autoimmunity 34 (3): J314–J321.  https://doi.org/10.1016/j.jaut.2009.12.001.CrossRefPubMedGoogle Scholar
  2. 2.
    Boehncke, W.H., and M.P. Schon. 2015. Psoriasis. Lancet 386 (9997): 983–994.  https://doi.org/10.1016/s0140-6736(14)61909-7.CrossRefPubMedGoogle Scholar
  3. 3.
    Kupetsky, E.A., A.R. Mathers, and L.K. Ferris. 2013. Anti-cytokine therapy in the treatment of psoriasis. Cytokine 61 (3): 704–712.  https://doi.org/10.1016/j.cyto.2012.12.027.CrossRefPubMedGoogle Scholar
  4. 4.
    Hao, Ji-Qing. 2014. Targeting Interleukin-22 in psoriasis. Inflammation 37 (1): 94–99.  https://doi.org/10.1007/s10753-013-9715-y.CrossRefPubMedGoogle Scholar
  5. 5.
    Yang, X., and S.G. Zheng. 2014. Interleukin-22: A likely target for treatment of autoimmune diseases. Autoimmunity Reviews 13 (6): 615–620.  https://doi.org/10.1016/j.autrev.2013.11.008.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zheng, Y., D.M. Danilenko, P. Valdez, I. Kasman, J. Eastham-Anderson, J. Wu, and W. Ouyang. 2007. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445 (7128): 648–651.  https://doi.org/10.1038/nature05505.CrossRefPubMedGoogle Scholar
  7. 7.
    Nograles, K.E., L.C. Zaba, E. Guttman-Yassky, J. Fuentes-Duculan, M. Suarez-Farinas, I. Cardinale, A. Khatcherian, et al. 2008. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. The British Journal of Dermatology 159 (5): 1092–1102.  https://doi.org/10.1111/j.1365-2133.2008.08769.x.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Boniface, K., F.X. Bernard, M. Garcia, A.L. Gurney, J.C. Lecron, and F. Morel. 2005. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. Journal of Immunology 174 (6): 3695–3702.CrossRefGoogle Scholar
  9. 9.
    Van Belle, A.B., M. de Heusch, M.M. Lemaire, E. Hendrickx, G. Warnier, K. Dunussi-Joannopoulos, L.A. Fouser, J.C. Renauld, and L. Dumoutier. 2012. IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. Journal of Immunology 188 (1): 462–469.  https://doi.org/10.4049/jimmunol.1102224.CrossRefGoogle Scholar
  10. 10.
    Chandra, A., A. Ray, S. Senapati, and R. Chatterjee. 2015. Genetic and epigenetic basis of psoriasis pathogenesis. Molecular Immunology 64 (2): 313–323.  https://doi.org/10.1016/j.molimm.2014.12.014.CrossRefPubMedGoogle Scholar
  11. 11.
    Tay, Y., L. Kats, L. Salmena, D. Weiss, S.M. Tan, U. Ala, F. Karreth, et al. 2011. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147 (2): 344–357.  https://doi.org/10.1016/j.cell.2011.09.029.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Guinea-Viniegra, J., M. Jimenez, H.B. Schonthaler, R. Navarro, Y. Delgado, M.J. Concha-Garzon, E. Tschachler, S. Obad, E. Dauden, and E.F. Wagner. 2014. Targeting miR-21 to treat psoriasis. Science Translational Medicine 6 (225): 225re221.  https://doi.org/10.1126/scitranslmed.3008089.CrossRefGoogle Scholar
  13. 13.
    Huang, R.Y., L. Li, M.J. Wang, X.M. Chen, Q.C. Huang, and C.J. Lu. 2015. An exploration of the role of microRNAs in psoriasis: A systematic review of the literature. Medicine (Baltimore) 94 (45): e2030.  https://doi.org/10.1097/md.0000000000002030.CrossRefGoogle Scholar
  14. 14.
    Stratakis, C.A., and S.E. Taymans. 1998. Structure of the gene coding for calcineurin B (PPP3R1) and mapping to D2S358-D2S1778 (chromosomal region 2p15). DNA Sequence 9 (4): 227–230.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang, M.G., H. Yi, D. Guerini, C.B. Klee, and O.W. McBride. 1996. Calcineurin A alpha (PPP3CA), calcineurin A beta (PPP3CB) and calcineurin B (PPP3R1) are located on human chromosomes 4, 10q21-->q22 and 2p16-->p15 respectively. Cytogenetics and Cell Genetics 72 (2–3): 236–241.CrossRefPubMedGoogle Scholar
  16. 16.
    Sakaguchi, S., and N. Sakaguchi. 1989. Organ-specific autoimmune disease induced in mice by elimination of T cell subsets. V. Neonatal administration of cyclosporin A causes autoimmune disease. Journal of Immunology 142 (2): 471–480.Google Scholar
  17. 17.
    Zeiser, R., V.H. Nguyen, A. Beilhack, M. Buess, S. Schulz, J. Baker, C.H. Contag, and R.S. Negrin. 2006. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood 108 (1): 390–399.  https://doi.org/10.1182/blood-2006-01-0329.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jadali, Z., and M.B. Eslami. 2014. T cell immune responses in psoriasis. Iranian Journal of Allergy, Asthma, and Immunology 13 (4): 220–230.PubMedGoogle Scholar
  19. 19.
    Wang-Tilz, Y., C. Tilz, B. Wang, G.P. Tilz, and H. Stefan. 2006. Influence of lamotrigine and topiramate on MDR1 expression in difficult-to-treat temporal lobe epilepsy. Epilepsia 47 (2): 233–239.  https://doi.org/10.1111/j.1528-1167.2006.00414.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Jiang, M., W. Ma, Y. Gao, K. Jia, Y. Zhang, H. Liu, and Q. Sun. 2017. IL-22-induced miR-122-5p promotes keratinocyte proliferation by targeting Sprouty2. Experimental Dermatology 26 (4): 368–374.  https://doi.org/10.1111/exd.13270.CrossRefPubMedGoogle Scholar
  21. 21.
    Park, C.Y., Y.S. Choi, and M.T. McManus. 2010. Analysis of microRNA knockouts in mice. Human Molecular Genetics 19 (R2): R169–R175.  https://doi.org/10.1093/hmg/ddq367.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chiang, D.Y., M. Zhang, N. Voigt, K.M. Alsina, H. Jakob, J.F. Martin, D. Dobrev, X.H. Wehrens, and N. Li. 2015. Identification of microRNA-mRNA dysregulations in paroxysmal atrial fibrillation. International Journal of Cardiology 184: 190–197.  https://doi.org/10.1016/j.ijcard.2015.01.075.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Song, F., D. Yang, B. Liu, Y. Guo, H. Zheng, L. Li, T. Wang, et al. 2014. Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clinical Cancer Research 20 (4): 878–889.  https://doi.org/10.1158/1078-0432.ccr-13-1844.CrossRefPubMedGoogle Scholar
  24. 24.
    Khokhar, A., S. Noorali, M. Sheraz, K. Mahalingham, D.G. Pace, M.R. Khanani, and O. Bagasra. 2012. Computational analysis to predict functional role of hsa-miR-3065-3p as an antiviral therapeutic agent for treatment of triple infections: HCV, HIV-1, and HBV. Libyan J Med 7: 19774.  https://doi.org/10.3402/ljm.v7i0.19774.CrossRefPubMedGoogle Scholar
  25. 25.
    Hu, B., X. Ying, J. Wang, J. Piriyapongsa, I.K. Jordan, J. Sheng, F. Yu, et al. 2014. Identification of a tumor-suppressive human-specific microRNA within the FHIT tumor-suppressor gene. Cancer Research 74 (8): 2283–2294.  https://doi.org/10.1158/0008-5472.can-13-3279.CrossRefPubMedGoogle Scholar
  26. 26.
    Ke, H., L. Zhao, X. Feng, H. Xu, L. Zou, Q. Yang, X. Su, L. Peng, and B. Jiao. 2016. NEAT1 is required for survival of breast cancer cells through FUS and miR-548. Gene Regul Syst Bio 10 (Suppl 1): 11–17.  https://doi.org/10.4137/grsb.s29414.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Shi, Y., M. Qiu, Y. Wu, and L. Hai. 2015. MiR-548-3p functions as an anti-oncogenic regulator in breast cancer. Biomedicine & Pharmacotherapy 75: 111–116.  https://doi.org/10.1016/j.biopha.2015.07.027.CrossRefGoogle Scholar
  28. 28.
    Zhu, S., C. He, S. Deng, X. Li, S. Cui, Z. Zeng, M. Liu, et al. 2016. MiR-548an, transcriptionally downregulated by HIF1alpha/HDAC1, suppresses tumorigenesis of pancreatic cancer by targeting vimentin expression. Molecular Cancer Therapeutics 15 (9): 2209–2219.  https://doi.org/10.1158/1535-7163.mct-15-0877.CrossRefPubMedGoogle Scholar
  29. 29.
    Musson, R.E., C.M. Cobbaert, and N.P. Smit. 2012. Molecular diagnostics of calcineurin-related pathologies. Clinical Chemistry 58 (3): 511–522.  https://doi.org/10.1373/clinchem.2011.167296.CrossRefPubMedGoogle Scholar
  30. 30.
    Doetschman, T., A. Sholl, Chen Hd, C. Gard, D.A. Hildeman, and R. Bommireddy. 2011. Divergent effects of calcineurin Abeta on regulatory and conventional T-cell homeostasis. Clinical Immunology 138 (3): 321–330.  https://doi.org/10.1016/j.clim.2010.12.020.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Satake, A., A.M. Schmidt, S. Nomura, and T. Kambayashi. 2014. Inhibition of calcineurin abrogates while inhibition of mTOR promotes regulatory T cell expansion and graft-versus-host disease protection by IL-2 in allogeneic bone marrow transplantation. PLoS One 9 (3): e92888.  https://doi.org/10.1371/journal.pone.0092888.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mattozzi, C., M. Salvi, S. D'Epiro, S. Giancristoforo, L. Macaluso, C. Luci, K. Lal, S. Calvieri, and A.G. Richetta. 2013. Importance of regulatory T cells in the pathogenesis of psoriasis: Review of the literature. Dermatology 227 (2): 134–145.  https://doi.org/10.1159/000353398.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Xintong Zhao
    • 1
  • Ronghua Li
    • 1
  • Meng Qiao
    • 1
  • Jianjun Yan
    • 1
  • Qing Sun
    • 1
  1. 1.Department of Dermatology, Qilu HospitalShangdong UniversityJinanChina

Personalised recommendations