, Volume 41, Issue 2, pp 437–448 | Cite as

Anti-inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Induced Mastitis in Mice

  • Kangfeng Jiang
  • Xiaofei Ma
  • Shuai Guo
  • Tao Zhang
  • Gan Zhao
  • Haichong Wu
  • Xiaoyan Wang
  • Ganzhen Deng


Rosmarinic acid (RA), a type of food additives mainly extracted from rosemary, has been reported to possess anti-inflammatory activities in some previous studies. However, the effects of RA on lipopolysaccharide (LPS)-induced mastitis have not been reported. Here, we investigated the anti-inflammatory effects of RA on LPS-induced mastitis in mice and elucidated the potential mechanisms in mouse mammary epithelial cells (mMECs). RA treatment significantly ameliorated the mammary structural damage, and reduced the activity of myeloperoxidase. ELISA and qPCR results indicated that RA dose-dependently decreased the expression of TNF-α, IL-1β, and IL-6 both in tissues and mMECs. Furthermore, RA remarkably suppressed the protein levels of TLR4, MyD88, IRAK1, TRAF6, and p-IKKβ. In addition, RA was also found to inhibit LPS-induced NF-κB signaling pathway activation. These results suggest that RA effectively attenuates LPS-induced mastitis by inhibiting the TLR4/MyD88/NF-κB signaling pathway.


rosmarinic acid mastitis LPS inflammation TLR4 NF-κB 


Funding Information

This study was supported by the National Natural Science Foundation of China (No. 31472254).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

10753_2017_700_Fig13_ESM.gif (3.2 mb)

(GIF 3314 kb)

10753_2017_700_MOESM1_ESM.tif (2 mb)
High Resulotion Image (TIFF 2069 kb)
10753_2017_700_Fig14_ESM.gif (6 mb)

(GIF 6155 kb)

10753_2017_700_MOESM2_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig15_ESM.gif (5.5 mb)

(GIF 5625 kb)

10753_2017_700_MOESM3_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_MOESM4_ESM.jpg (722 kb)
ESM 4 (JPEG 721 kb)
10753_2017_700_Fig16_ESM.gif (4 mb)

(GIF 4137 kb)

10753_2017_700_MOESM5_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig17_ESM.gif (5.5 mb)

(GIF 5623 kb)

10753_2017_700_MOESM6_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig18_ESM.gif (6.3 mb)

(GIF 6404 kb)

10753_2017_700_MOESM7_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig19_ESM.gif (4 mb)

(GIF 4100 kb)

10753_2017_700_MOESM8_ESM.tif (796 kb)
High Resulotion Image (TIFF 796 kb)
10753_2017_700_Fig20_ESM.gif (4.3 mb)

(GIF 4454 kb)

10753_2017_700_MOESM9_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig21_ESM.gif (4.9 mb)
ESM 10

(GIF 4994 kb)

10753_2017_700_MOESM10_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig22_ESM.gif (5.2 mb)
ESM 11

(GIF 5320 kb)

10753_2017_700_MOESM11_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig23_ESM.gif (6.3 mb)
ESM 12

(GIF 6469 kb)

10753_2017_700_MOESM12_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig24_ESM.gif (5.4 mb)
ESM 13

(GIF 5565 kb)

10753_2017_700_MOESM13_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig25_ESM.gif (6.6 mb)
ESM 14

(GIF 6714 kb)

10753_2017_700_MOESM14_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)
10753_2017_700_Fig26_ESM.gif (4.7 mb)
ESM 15

(GIF 4846 kb)

10753_2017_700_MOESM15_ESM.tif (6 mb)
High Resulotion Image (TIFF 6147 kb)


  1. 1.
    Nair, M., J. Joy, P. Vasudevan, L. Hinckley, T. Hoagland, and K. Venkitanarayanan. 2005. Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. Journal of Dairy Science 88: 3488–3495.CrossRefPubMedGoogle Scholar
  2. 2.
    Wellenberg, G., W. Van Der Poel, and J. Van Oirschot. 2002. Viral infections and bovine mastitis: a review. Veterinary Microbiology 88: 27–45.CrossRefPubMedGoogle Scholar
  3. 3.
    Bradley, A.J. 2002. Bovine mastitis: an evolving disease. The Veterinary Journal 164: 116–128.CrossRefPubMedGoogle Scholar
  4. 4.
    Hillerton, J., and E. Berry. 2005. Treating mastitis in the cow—a tradition or an archaism. Journal of Applied Microbiology 98: 1250–1255.CrossRefPubMedGoogle Scholar
  5. 5.
    Werner-Misof, C., J. Macuhova, V. Tancin, and R. Bruckmaier. 2007. Dose dependent changes in inflammatory parameters in the milk of dairy cows after intramammary infusion of lipopolysaccharide. Veterinarni Medicina-Praha 52: 95.CrossRefGoogle Scholar
  6. 6.
    Wu, H., G. Zhao, K. Jiang, X. Chen, G. Rui, C. Qiu, et al. 2016. IFN-τ alleviates lipopolysaccharide-induced inflammation by suppressing NF-κB and MAPKs pathway activation in mice. Inflammation 39: 1141–1150.Google Scholar
  7. 7.
    Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805–820.CrossRefPubMedGoogle Scholar
  8. 8.
    Zeuke, S., A.J. Ulmer, S. Kusumoto, H.A. Katus, and H. Heine. 2002. TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovascular Research 56: 126–134.CrossRefPubMedGoogle Scholar
  9. 9.
    Kauf, A.C., B.T. Vinyard, and D.D. Bannerman. 2007. Effect of intramammary infusion of bacterial lipopolysaccharide on experimentally induced Staphylococcus aureus intramammary infection. Research in Veterinary Science 82: 39–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Burns, K., F. Martinon, C. Esslinger, H. Pahl, P. Schneider, J.-L. Bodmer, et al. 1998. MyD88, an adapter protein involved in interleukin-1 signaling. Journal of Biological Chemistry 273: 12203–12209.CrossRefPubMedGoogle Scholar
  11. 11.
    Takeuchi, O., A. Kaufmann, K. Grote, T. Kawai, K. Hoshino, M. Morr, et al. 2000. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2-and MyD88-dependent signaling pathway. The Journal of Immunology 164: 554–557.CrossRefPubMedGoogle Scholar
  12. 12.
    Karin, M., and F.R. Greten. 2005. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology 5: 749–759.CrossRefPubMedGoogle Scholar
  13. 13.
    Al-Sheraji, S.H., A. Ismail, M.Y. Manap, S. Mustafa, R.M. Yusof, and F.A. Hassan. 2013. Prebiotics as functional foods: a review. Journal of Functional Foods 5: 1542–1553.CrossRefGoogle Scholar
  14. 14.
    Yesil-Celiktas, O., C. Sevimli, E. Bedir, and F. Vardar-Sukan. 2010. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods for Human Nutrition 65: 158–163.CrossRefPubMedGoogle Scholar
  15. 15.
    Awad, R., A. Muhammad, T. Durst, V.L. Trudeau, and J.T. Arnason. 2009. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytotherapy Research: PTR 23: 1075–1081.CrossRefPubMedGoogle Scholar
  16. 16.
    Kwon, Y.O., J.T. Hong, and K.W. Oh. 2017. Rosmarinic acid potentiates pentobarbital-induced sleep behaviors and non-rapid eye movement (NREM) sleep through the activation of GABAA-ergic systems. Biomolecules & Therapeutics 25: 105–111.CrossRefGoogle Scholar
  17. 17.
    Lee, H.J., Y.I. Jeong, T.H. Lee, I.D. Jung, J.S. Lee, C.M. Lee, et al. 2007. Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Biochemical Pharmacology 73: 1412–1421.CrossRefPubMedGoogle Scholar
  18. 18.
    Chu, X., X. Ci, J. He, L. Jiang, M. Wei, Q. Cao, et al. 2012. Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules (Basel, Switzerland) 17: 3586–3598.CrossRefGoogle Scholar
  19. 19.
    Yang, E.J., S.K. Ku, W. Lee, S. Lee, T. Lee, K.S. Song, et al. 2013. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. Journal of Cellular Physiology 228: 975–982.CrossRefPubMedGoogle Scholar
  20. 20.
    Alcaraz, M., M. Alcaraz-Saura, D.G. Achel, A. Olivares, J.A. LÓPEZ-MORATA, and J. Castillo. 2014. Radiosensitizing effect of rosmarinic acid in metastatic melanoma B16F10 cells. Anticancer Research 34: 1913–1921.PubMedGoogle Scholar
  21. 21.
    Lee, J.-W., M. Paape, T. Elsasser, and X. Zhao. 2003. Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide. Journal of Dairy Science 86: 2382–2389.CrossRefPubMedGoogle Scholar
  22. 22.
    Zheng, J., A.D. Watson, and D.E. Kerr. 2006. Genome-wide expression analysis of lipopolysaccharide-induced mastitis in a mouse model. Infection and Immunity 74: 1907–1915.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wu, H., G. Zhao, K. Jiang, X. Chen, Z. Zhu, C. Qiu, et al. 2016. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-kappaB and MAPK activation. International Immunopharmacology 35: 315–322.CrossRefPubMedGoogle Scholar
  24. 24.
    Li, D., N. Zhang, Y. Cao, W. Zhang, G. Su, Y. Sun, et al. 2013. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-κB and MAPKs signal pathways. European Journal of Pharmacology 705: 79–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu, Z., J. Zhang, S. Li, and J. Jiang. 2017. Artesunate inhibits renal ischemia reperfusion-stimulated lung inflammation in rats by activating HO-1 pathway. Inflammation: 1–8.
  26. 26.
    Lai, J.L., Y.H. Liu, C. Liu, M.P. Qi, R.N. Liu, X.F. Zhu, et al. 2017. Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation 40: 1–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Wu, H., K. Jiang, N. Yin, X. Ma, G. Zhao, C. Qiu, et al. 2017. Thymol mitigates lipopolysaccharide-induced endometritis by regulating the TLR4- and ROS-mediated NF-kappaB signaling pathways. Oncotarget 8: 20042–20055.Google Scholar
  28. 28.
    Huang, Q., J. Yang, Y. Lin, C. Walker, J. Cheng, Z.G. Liu, et al. 2004. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nature Immunology 5: 98–103.CrossRefPubMedGoogle Scholar
  29. 29.
    LeBlanc, S.J., K.D. Lissemore, D.F. Kelton, T.F. Duffield, and K.E. Leslie. 2006. Major advances in disease prevention in dairy cattle. Journal of Dairy Science 89: 1267–1279.CrossRefPubMedGoogle Scholar
  30. 30.
    Hu, X., Y. Fu, Y. Tian, Z. Zhang, W. Zhang, X. Gao, et al. 2016. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice. International Immunopharmacology 30: 150–156.CrossRefPubMedGoogle Scholar
  31. 31.
    Cao, W., C. Hu, L. Wu, L. Xu, and W. Jiang. 2016. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-kappaB signaling in H22 tumor-bearing mice. Journal of Pharmacological Sciences 132: 131–137.CrossRefPubMedGoogle Scholar
  32. 32.
    Wei, D., and Z. Huang. 2014. Anti-inflammatory effects of triptolide in LPS-induced acute lung injury in mice. Inflammation 37: 1307–1316.CrossRefPubMedGoogle Scholar
  33. 33.
    Zbinden, C., R. Stephan, S. Johler, N. Borel, J. Bunter, R.M. Bruckmaier, et al. 2014. The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype. PLoS One 9: e87374.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ibeagha-Awemu, E.M., J.W. Lee, A.E. Ibeagha, D.D. Bannerman, M.J. Paape, and X. Zhao. 2008. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells. Veterinary Research 39: 11.CrossRefPubMedGoogle Scholar
  35. 35.
    Hoeben, D., C. Burvenich, E. Trevisi, G. Bertoni, J. Hamann, R.M. Bruckmaier, et al. 2000. Role of endotoxin and TNF-alpha in the pathogenesis of experimentally induced coliform mastitis in periparturient cows. The Journal of Dairy Research 67: 503–514.CrossRefPubMedGoogle Scholar
  36. 36.
    Wellnitz, O., S.K. Wall, M. Saudenova, and R.M. Bruckmaier. 2014. Effect of intramammary administration of prednisolone on the blood-milk barrier during the immune response of the mammary gland to lipopolysaccharide. American Journal of Veterinary Research 75: 595–601.CrossRefPubMedGoogle Scholar
  37. 37.
    Li, D., Y. Fu, W. Zhang, G. Su, B. Liu, M. Guo, et al. 2013. Salidroside attenuates inflammatory responses by suppressing nuclear factor-kappaB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflammation Research: Official Journal of the European Histamine Research Society 62: 9–15.CrossRefGoogle Scholar
  38. 38.
    Jiang, K., X. Chen, G. Zhao, H. Wu, J. Mi, C. Qiu, et al. 2016. IFN-tau plays an anti-inflammatory role in Staphylococcus aureus-induced endometritis in mice through the suppression of NF-kappaB pathway and MMP9 expression. Journal of Interferon & Cytokine Research 37: 81–89.Google Scholar
  39. 39.
    Mateu, A., L. Ramudo, M.A. Manso, and I. De Dios. 2015. Cross-talk between TLR4 and PPARgamma pathways in the arachidonic acid-induced inflammatory response in pancreatic acini. The International Journal of Biochemistry & Cell Biology 69: 132–141.CrossRefGoogle Scholar
  40. 40.
    Zhang, W.J., and B. Frei. 2015. Astragaloside IV inhibits NF- kappa B activation and inflammatory gene expression in LPS-treated mice. Mediators of Inflammation 2015: 274314.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Jiang, K.F., G. Zhao, G.Z. Deng, H.C. Wu, N.N. Yin, X.Y. Chen, et al. 2016. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-kappaB pathway. Acta Pharmacologica Sinica 38: 211–222.Google Scholar
  42. 42.
    Morris, K.R., R.D. Lutz, H.S. Choi, T. Kamitani, K. Chmura, and E.D. Chan. 2003. Role of the NF-kappaB signaling pathway and kappaB cis-regulatory elements on the IRF-1 and iNOS promoter regions in mycobacterial lipoarabinomannan induction of nitric oxide. Infection and Immunity 71: 1442–1452.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li, Q., and I.M. Verma. 2002. NF-κB regulation in the immune system. Nature Reviews Immunology 2: 725–734.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao, G., K. Jiang, H. Wu, C. Qiu, G. Deng, and X. Peng. 2017. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFkappaB signalling. Journal of Cellular and Molecular Medicine 21: 2796–2808.Google Scholar
  45. 45.
    Zhao, G., T. Zhang, X. Ma, K. Jiang, H. Wu, C. Qiu, et al. 2017. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury. Oncotarget 8: 68153–68164.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Clinical Veterinary Medicine, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations