, Volume 41, Issue 2, pp 390–399 | Cite as

Geniposide Suppresses Interleukin-1β-Induced Inflammation and Apoptosis in Rat Chondrocytes via the PI3K/Akt/NF-κB Signaling Pathway

  • Tianlong Pan
  • Xuchao Shi
  • Huan Chen
  • Rong Chen
  • Dengying Wu
  • Zeng Lin
  • Jingdong Zhang
  • Jun Pan


Osteoarthritis (OA) is a chronic degenerative joint disease that is principally characterized by progressive joint dysfunction and cartilage degradation. Inflammation and apoptosis play critical roles in the progression of OA. Geniposide (GPO), one of the principal components of the fruit of Gardenia jasminoides Ellis, has been reported to have anti-inflammatory and other pharmacological effects. In this study, we performed in vitro experiments on rat chondrocytes to examine the therapeutic effects of GPO on OA and investigated its effects in vivo in a rat model of OA induced by medial meniscal tear (MMT). The results suggest that GPO can inhibit the expression of INOS, COX-2, and MMP-13 in vitro, and promote the expression of collagen II in rat chondrocytes stimulated with interleukin-1β (IL-1β). In addition, we also found that GPO can inhibit the expression of pro-apoptotic proteins such as Bax, Cyto-c, and C-caspase3 and increase the expression of the anti-apoptotic protein Bcl-2. These changes may be related to GPO-induced inhibition of the IL-1β-induced activation of the PI3K/Akt/NF-κB signaling pathway. In vivo, we also found that GPO can limit the development of OA in a rat model. Taken together, the above results indicate that GPO has potential therapeutic value for treating OA.


geniposide osteoarthritis chondrocyte inflammation apoptosis PI3K/Akt/NF-κB 


Funding Information

This work is supported by grant from Wenzhou Science and Technology Project (Grant No. Y20150066) and Zhejiang Provincial Medical Science and Technology Project (Grant No. 2014RCA017).

Compliance with Ethical Standards

The study was in accordance with the Declaration of Helsinki and Tokyo.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Loeser, R.F. 2009. Aging and osteoarthritis: The role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis and Cartilage 17 (8): 971–979.CrossRefGoogle Scholar
  2. 2.
    Nasi, S., H.K. Ea, A. So, et al. 2017. Revisiting the role of interleukin-1 pathway in osteoarthritis: Interleukin-1alpha and -1beta, and NLRP3 inflammasome are not involved in the pathological features of the murine meniscectomy model of osteoarthritis. Frontiers in Pharmacology 13 (8): 282.CrossRefGoogle Scholar
  3. 3.
    Habouri, L., F.E. El Mansouri, Y. Ouhaddi, et al. 2017. Deletion of 12/15-lipoxygenase accelerates the development of aging-associated and instability-induced osteoarthritis. Osteoarthritis and Cartilage S1063-4584 (17): 31061.Google Scholar
  4. 4.
    Tootsi, K., A. Martson, J. Kals, et al. 2017. Metabolic factors and oxidative stress in osteoarthritis: A case-control study. Scandinavian Journal of Clinical and Laboratory Investigation 24: 1–7.Google Scholar
  5. 5.
    Buckwalter, J.A., H.J. Mankin, and A.J. Grodzinsky. 2005. Articular cartilage and osteoarthritis. Instructional Course Lectures 54: 465–480.PubMedGoogle Scholar
  6. 6.
    Wang, M., J. Shen, H. Jin, et al. 2011. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Annals of the New York Academy of Sciences 1240: 61–69.CrossRefGoogle Scholar
  7. 7.
    Fioravanti, A., L. Tinti, N.A. Pascarelli, et al. 2012. In vitro effects of VA441, a new selective cyclooxygenase-2 inhibitor, on human osteoarthritic chondrocytes exposed to IL-1beta. Journal of Pharmacological Sciences 120 (1): 6–14.CrossRefGoogle Scholar
  8. 8.
    Cheng, W., D. Wu, Q. Zuo, et al. 2013. Ginsenoside Rb1 prevents interleukin-1 beta induced inflammation and apoptosis in human articular chondrocytes. International Orthopaedics 37 (10): 2065–2070.CrossRefGoogle Scholar
  9. 9.
    Aigner, T., and H.A. Kim. 2002. Apoptosis and cellular vitality: Issues in osteoarthritic cartilage degeneration. Arthritis and Rheumatism 46 (8): 1986–1996.CrossRefGoogle Scholar
  10. 10.
    Gross, A., J.M. McDonnell, and S.J. Korsmeyer. 1999. BCL-2 family members and the mitochondria in apoptosis. Genes & Development 13 (15): 1899–1911.CrossRefGoogle Scholar
  11. 11.
    Wang, F., L. Wu, L. Li, et al. 2014. Monotropein exerts protective effects against IL-1beta-induced apoptosis and catabolic responses on osteoarthritis chondrocytes. International Immunopharmacology 23 (2): 575–580.CrossRefGoogle Scholar
  12. 12.
    Lu, S., X. Xiao, and M. Cheng. 2015. Matrine inhibits IL-1beta-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-kappaB in human chondrocytes in vitro. International Journal of Clinical and Experimental Pathology 8 (5): 4764–4772.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lou, Y., C. Wang, Q. Tang, et al. 2017. Paeonol inhibits IL-1beta-induced inflammation via PI3K/Akt/NF-kappaB pathways: In vivo and vitro studies. Inflammation. Scholar
  14. 14.
    Kobayashi, M., G.R. Squires, A. Mousa, et al. 2005. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis and Rheumatism 52 (1): 128–135.CrossRefGoogle Scholar
  15. 15.
    Lee, I.H., J.H. Lee, N.I. Baek, and D.H. Kim. 2005. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biological & Pharmaceutical Bulletin 28: 2106–2110.CrossRefGoogle Scholar
  16. 16.
    Wang, R., H. Wu, J. Chen, et al. 2017. Antiinflammation effects and mechanisms study of geniposide on rats with collagen-induced arthritis. Phytotherapy Research 31 (4): 631–637.CrossRefGoogle Scholar
  17. 17.
    Dai, M.M., H. Wu, H. Li, et al. 2014. Effects and mechanisms of Geniposide on rats with adjuvant arthritis. International Immunopharmacology 20 (1): 46–53.CrossRefGoogle Scholar
  18. 18.
    Chen, J.Y., H. Wu, H. Li, et al. 2015. Anti-inflammatory effects and pharmacokinetics study of geniposide on rats with adjuvant arthritis. International Immunopharmacology 24 (1): 102–109.CrossRefGoogle Scholar
  19. 19.
    Pritzker, K.P., S. Gay, S.A. Jimenez, et al. 2006. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthritis and Cartilage 14 (1): 13–29.CrossRefGoogle Scholar
  20. 20.
    Saxby, D.J., and D.G. Lloyd. 2017. Osteoarthritis year in review 2016: Mechanics. Osteoarthritis and Cartilage 25 (2): 190–198.CrossRefGoogle Scholar
  21. 21.
    Egloff, C., A. Sawatsky, T. Leonard, et al. 2014. Effect of muscle weakness and joint inflammation on the onset and progression of osteoarthritis in the rabbit knee. Osteoarthritis and Cartilage 22 (11): 1886e93.CrossRefGoogle Scholar
  22. 22.
    Palmoski, M.J., R.A. Colyer, and K.D. Brandt. 1980. Joint motion in the absence of normal loading does not maintain normal articular cartilage. Arthritis and Rheumatism 23 (3): 325e34.CrossRefGoogle Scholar
  23. 23.
    Mobasheri, A., C. Csaki, A.L. Clutterbuck, et al. 2009. Mesenchymal stem cells in connective tissue engineering and regenerative medicine: Applications in cartilage repair and osteoarthritis therapy. Histology and Histopathology 24 (3): 347–366.PubMedGoogle Scholar
  24. 24.
    de Rezende, M.U., and R.G. Gobbi. 2015. Drug therapy in knee osteoarthrosis. Revista Brasileira de Ortopedia 44 (1): 14–19.CrossRefGoogle Scholar
  25. 25.
    Amin, A.R., M. Dave, M. Attur, et al. 2000. COX-2, NO, and cartilage damage and repair. Current Rheumatology Reports 2 (6): 447–453.CrossRefGoogle Scholar
  26. 26.
    Arasapam, G., M. Scherer, J.C. Cool, et al. 2006. Roles of COX-2 and iNOS in the bony repair of the injured growth plate cartilage. Journal of Cellular Biochemistry 99 (2): 450–461.CrossRefGoogle Scholar
  27. 27.
    Bianchi, A., D. Moulin, S. Sebillaud, et al. 2005. Contrasting effects of peroxisome-proliferator-activated receptor (PPAR) gamma agonists on membrane-associated prostaglandin E2 synthase-1 in IL-1beta-stimulated rat chondrocytes: Evidence for PPARgamma-independent inhibition by 15-deoxy-Delta12,14 prostaglandin J2. Arthritis Research & Therapy 7 (6): R1325–R1337.CrossRefGoogle Scholar
  28. 28.
    Koch, B., W. Baum, G.R. Burmester, et al. 1989. Prostaglandin E2, interleukin 1 and gamma interferon production of mononuclear cells of patients with inflammatory and degenerative joint diseases. Zeitschrift für Rheumatologie 48 (4): 194–199.PubMedGoogle Scholar
  29. 29.
    Cheleschi, S., N.A. Pascarelli, G. Valacchi, et al. 2015. Chondroprotective effect of three different classes of anti-inflammatory agents on human osteoarthritic chondrocytes exposed to IL-1beta. International Immunopharmacology 28 (1): 794–801.CrossRefGoogle Scholar
  30. 30.
    de Boer, T.N., A.M. Huisman, A.A. Polak, et al. 2009. The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: Ex vivo evaluation of human cartilage tissue after in vivo treatment. Osteoarthritis and Cartilage 17 (4): 482–488.CrossRefGoogle Scholar
  31. 31.
    Zhang, X., X. Xu, T. Xu, et al. 2014. Beta-Ecdysterone suppresses interleukin-1beta-induced apoptosis and inflammation in rat chondrocytes via inhibition of NF-kappaB signaling pathway. Drug Development Research 75 (3): 195–201.PubMedGoogle Scholar
  32. 32.
    Liu, J.F., Y.L. Huang, W.H. Yang, et al. 2012. 1-benzyl-2-phenylbenzimidazole (BPB), a benzimidazole derivative, induces cell apoptosis in human chondrosarcoma through intrinsic and extrinsic pathways. International Journal of Molecular Sciences 13 (12): 16472–16488.CrossRefGoogle Scholar
  33. 33.
    Wakamatsu, K., T. Nanki, N. Miyasaka, et al. 2005. Effect of a small molecule inhibitor of nuclear factor-kappaB nuclear translocation in a murine model of arthritis and cultured human synovial cells. Arthritis Research & Therapy 7 (6): R1348–R1359.CrossRefGoogle Scholar
  34. 34.
    Wang, L., Y. Xu, Q. Yu, et al. 2014. H-RN, a novel antiangiogenic peptide derived from hepatocyte growth factor inhibits inflammation in vitro and in vivo through PI3K/AKT/IKK/NF-κB signal pathway. Biochemical Pharmacology 89 (2): 255–265.CrossRefGoogle Scholar
  35. 35.
    Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: A key role in inflammatory diseases. The Journal of Clinical Investigation 107 (1): 7–11.CrossRefGoogle Scholar
  36. 36.
    Yu, D.G., S.B. Nie, F.X. Liu, et al. 2015. Dynamic alterations in microarchitecture, mineralization and mechanical property of subchondral bone in rat medial meniscal tear model of osteoarthritis. Chinese Medical Journal 128 (21): 2879–2886.CrossRefGoogle Scholar
  37. 37.
    van Osch, G.J., P.M. van der Kraan, E.L. Vitters, et al. 1993. Induction of osteoarthritis by intra-articular injection of collagenase in mice. Strain and sex related differences. Osteoarthritis and Cartilage 1 (3): 171–177.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Tianlong Pan
    • 1
  • Xuchao Shi
    • 1
  • Huan Chen
    • 2
  • Rong Chen
    • 1
  • Dengying Wu
    • 1
  • Zeng Lin
    • 1
  • Jingdong Zhang
    • 1
  • Jun Pan
    • 1
  1. 1.Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
  2. 2.Department of OrthopaedicsYongjia County People’s HospitalShang Tang TownChina

Personalised recommendations