, Volume 41, Issue 1, pp 307–314 | Cite as

RX-207, a Small Molecule Inhibitor of Protein Interaction with Glycosaminoglycans (SMIGs), Reduces Experimentally Induced Inflammation and Increases Survival Rate in Cecal Ligation and Puncture (CLP)-Induced Sepsis

  • Stefan Juhas
  • Nicholas Harris
  • Gabriela Il’kova
  • Pavol Rehák
  • Ferenc Zsila
  • Faina Yurgenzon Kogan
  • Orly Lahmy
  • Regina Zhuk
  • Paul Gregor
  • Juraj Koppel


The fused quinazolinone derivative, RX-207, is chemically and functionally related to small molecule inhibitors of protein binding to glycosaminoglycans (SMIGs). Composed of a planar aromatic amine scaffold, it inhibits protein binding to glycosaminoglycans (GAGs). RX-207 reduced neutrophil migration in thioglycollate-induced peritonitis (37%), inhibited carrageenan-induced paw edema (32%) and cerulein-induced pancreatitis (28%), and increased animal survival in the mouse model of cecal ligation and puncture (CLP)-induced sepsis (60%). The mechanism of RX-207 action, analyzed by UV spectroscopy, confirmed that which was elucidated for chemically related anti-inflammatory SMIGs. RX-207 binding to cell surface GAGs can account for the inhibition of neutrophil recruitment via the micro-vasculature and as a consequence, the reduction of neutrophil mediated tissue damage in the animal models of inflammation and improved survival of mice in CLP-induced sepsis.


heparin binding protein glycosaminoglycan neutrophil inflammation sepsis 


Funding Information

This study was supported by the Project No. ITMS 26220120066 of the Research and Development Operational Program funded by the European Regional Development Fund.

Compliance with Ethical Standards

The animal experiments were reviewed and approved by the Ethical Committee for animal experimentation of the Institute of Animal Physiology, approved by the State Veterinary and Food Administration of the Slovak Republic and were performed in accordance with Slovak legislation based on EC Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes.


  1. 1.
    Pavlik, D.J., R.W. Simpson, E.T. Horn, L. King, and L. Finoli. 2015. Pharmacotherapy of sepsis. Critical Care Nursing Quarterly 38: 121–136.CrossRefPubMedGoogle Scholar
  2. 2.
    Marshall, J.C. 2014. Why have clinical trials in sepsis failed? Trends in Molecular Medicine 20: 195–203.CrossRefPubMedGoogle Scholar
  3. 3.
    Fink, M.P., and H.S. Warren. 2014. Strategies to improve drug development for sepsis. Nature Reviews Drug Discovery 13: 741–758.CrossRefPubMedGoogle Scholar
  4. 4.
    Vincent, J.L., E.O. Martinez, and E. Silva. 2011. Evolving concepts in sepsis definitions. Critical Care Nursing Clinics of North America 23: 29–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Munford, R.S. 2006. Severe sepsis and septic shock: the role of gram-negative bacteremia. Annual Reviews of Pathology 1: 467–496.CrossRefGoogle Scholar
  6. 6.
    Koh, I.H., J.L. Menchaca-Diaz, T.H. Koh, R.L. Souza, C.M. Shu, V.E. Rogerio, and A.M. Liberatore. 2010. Microcirculatory evaluation in sepsis: a difficult task. Shock 34 (Suppl1): 27–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Wagner, J.G., and R.A. Roth. 2000. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacological Reviews 52: 349–374.PubMedGoogle Scholar
  8. 8.
    Woodfin, A., M.B. Voisin, M. Beyrau, B. Colom, D. Caille, F.M. Diapouli, G.B. Nash, T. Chavakis, S.M. Albelda, G.E. Rainger, P. Meda, B.A. Imhof, and S. Nourshargh. 2011. The junctional adhesion molecule JAM-C regulates polarized trans-endothelial migration of neutrophils in vivo. Nature Immunology 12: 761–769.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Harris, N., F. Yurgenzon Kogan, G. Il'kova, S. Juhas, O. Lahmy, Y.I. Gregor, J. Koppel, R. Zhuk, and P. Gregor. 2014. Small molecule inhibitors of protein interaction with glycosaminoglycans (SMIGs), a novel class of bioactive agents with anti-inflammatory properties. Biochimica et Biophysica Acta 1840: 245–254.CrossRefPubMedGoogle Scholar
  10. 10.
    Harris, N., J. Koppel, F. Zsila, S. Juhas, G. Il’kova, F. Yurgenzon Kogan, O. Lahmy, G. Wildbaum, N. Karin, R. Zhuk, and P. Gregor. 2016. Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis. Inflammation Research 65: 285–294.CrossRefPubMedGoogle Scholar
  11. 11.
    Xie, X., A.S. Rivier, A. Zakrzewicz, M. Bernimoulin, X.-L. Zeng, H.P. Wesseli, M. Schapira, and O. Spertini. 2000. Inhibition of selectin-mediated cell adhesion and prevention of acute inflammation by nonanticoagulant sulfated saccharides. The Journal of Biological Chemistry 275: 34818–34825.CrossRefPubMedGoogle Scholar
  12. 12.
    Torres, S.R., T.S. Fröde, G.M. Nardi, N. Vita, R. Reeb, P. Ferrara, R.M. Ribeiro-do-Valle, and R.C. Farges. 2000. Anti-inflammatory effects of peripheral benzodiazepine receptor ligands in two mouse models of inflammation. European Journal of Pharmacology 408: 199–211.CrossRefPubMedGoogle Scholar
  13. 13.
    Cuzzocrea, S., E. Mazzon, L. Dugo, I. Serraino, T. Centorrino, A. Ciccolo, F.A. Van de Loo, D. Britti, A.P. Caputi, and C. Thiemermann. 2002. Inducible nitric oxide synthase-deficient mice exhibit resistance to the acute pancreatitis induced by cerulein. Shock 17: 416–422.CrossRefPubMedGoogle Scholar
  14. 14.
    Steinberg, W.M., S.S. Goldstein, N.D. Davis, J. Shamma'a, and K. Anderson. 1985. Diagnostic Assays in Acute Pancreatitis: A Study of Sensitivity and Specificity. Annals of Internal Medicine 102: 576–580.CrossRefPubMedGoogle Scholar
  15. 15.
    Fink, M.P., and S.O. Heard. 1990. Laboratory Models of Sepsis and Septic Shock. Journal of Surgical Research 49: 186–196.CrossRefPubMedGoogle Scholar
  16. 16.
    Henderson, R.B., J.A.R. Hobbs, M. Mathies, and N. Hogg. 2003. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 102: 328–335.CrossRefPubMedGoogle Scholar
  17. 17.
    Kipari, T., S. Watson, K. Houlberg, S. Lepage, J. Hughes, and J.F. Cailhier. 2009. Lymphocytes modulate peritoneal leukocyte recruitment in peritonitis. Inflammation Research 58: 553–560.CrossRefPubMedGoogle Scholar
  18. 18.
    Vinegar, R., J.F. Truax, J.L. Selph, P.R. Johnston, A.L. Venable, and K.K. McKenzie. 1987. Pathway to carrageenan-induced inflammation in the hind limb of the rat. Federation Proceedings 46: 118–126.PubMedGoogle Scholar
  19. 19.
    Niederau, C., L.D. Ferrell, and J.H. Grendell. 1985. Cerulein induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88: 1192–1204.CrossRefPubMedGoogle Scholar
  20. 20.
    Fournier, B.M., and C.A. Parkos. 2012. The role of neutrophils during intestinal inflammation. Mucosal Immunology 5: 354–366.CrossRefPubMedGoogle Scholar
  21. 21.
    Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13: 159–175.CrossRefPubMedGoogle Scholar
  22. 22.
    Nauseef, W.M., and N. Borregaard. 2014. Neutrophils at work. Nature Immunology 15: 602–611.CrossRefPubMedGoogle Scholar
  23. 23.
    Mantovani, A., M.A. Cassatella, C. Costantini, and S. Jaillon. 2011. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology 11: 519–531.CrossRefPubMedGoogle Scholar
  24. 24.
    Siempos, I.I., H.C. La, Y. Ding, M.E. Choi, A.M.K. Choi, and S.W. Ryter. 2014. Cecal Ligation and Puncture-induced Sepsis as a Model to Study Autophagy in Mice. Journal of Visualized Experiments 84 (e51066): 1–7.Google Scholar
  25. 25.
    Zsila, F. 2015. Glycosaminoglycans are potential pharmacological targets for classic DNA minor groove binder drugs berenil and pentamidine. Physical Chemistry Chemical Physics 17: 24560–24565.CrossRefPubMedGoogle Scholar
  26. 26.
    Howard, M., T. Muchamuel, S. Andrade, and S. Menon. 1993. Interleukin 10 protects mice from lethal endotoxemia. Journal of Experimental Medicine 177 (4): 1205–1208.CrossRefPubMedGoogle Scholar
  27. 27.
    Nicoletti, F., G. Mancuso, V. Cusumano, R. Di Marco, P. Zaccone, K. Bendtzen, and G. Teti. 1997. Prevention of endotoxin-induced lethality in neonatal mice by interleukin-13. European Journal of Immunology 27 (6): 1580–1583.CrossRefPubMedGoogle Scholar
  28. 28.
    Martin, L., P. Koczera, E. Zechendorf, and T. Schuerholz. 2016. The Endothelial Glycocalyx: New Diagnostic and Therapeutic Approaches in Sepsis. BioMed Research International 2016: 1–8.CrossRefGoogle Scholar
  29. 29.
    Huang, M.L., C.J. Fisher, and K. Godula. 2016. Glycomaterials for probing host–pathogen interactions and the immune response. Experimental Biology and Medicine 241: 1042–1053.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Martin, L., C. Peters, S. Schmitz, J. Moellmann, A. Martincuks, N. Heussen, M. Lehrke, G. Müller-Newen, G. Marx, and T. Schuerholz. 2015. Soluble heparan sulfate in serum of septic shock patients induces mitochondrial dysfunction in murine cardiomyocytes. Shock 44: 569–577.CrossRefPubMedGoogle Scholar
  31. 31.
    Bentzer, P., J. Fisher, H.J. Kong, M. Mörgelin, J.H. Boyd, K.R. Walley, J.A. Russell, and A. Linder. 2016. Heparin-binding protein is important for vascular leak in sepsis. Intensive Care Medicine Experimental 4: 1–16.CrossRefGoogle Scholar
  32. 32.
    Gautam, N., A.M. Olofsson, H. Herwald, L.F. Iversen, E. Lundgren-Akerlund, P. Hedqvist, K.E. Arfors, H. Flodgaard, and L. Lindbom. 2001. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular Permeability. Nature Medicine 7: 1123–1127.CrossRefPubMedGoogle Scholar
  33. 33.
    Gotts, J.E., and M.A. Matthay. 2016. Sepsis: pathophysiology and clinical management. British Medical Journal 353: 1585–1605.CrossRefGoogle Scholar
  34. 34.
    Chatterjee, N., S. Da, D. Bose, S. Banerjee, S. Das, D. Chattopadhyay, and K.D. Saha. 2012. Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury. Toxicology and Applied Pharmacology 264: 182–191.CrossRefPubMedGoogle Scholar
  35. 35.
    Pacheco de Oliveira, M.T., T.R. de Oliveira Ramalho, L.K. Paiva Ferreira, A.L. Araújo Lima, M. Barbosa Cordeiro, H. Ferreira Costa, L.C. Rodrigues, and M.R. Piuvezam. 2015. Synthesis, toxicity study and anti-inflammatory effect of MHTP, a new tetrahydroisoquinoline alkaloid. Immunopharmacology and Immunotoxicology 37: 400–412.CrossRefPubMedGoogle Scholar
  36. 36.
    Vellinga, N.A.R., G. Veenstra, C. Scorcella, M. Koopmans, E.N. van Roon, C. Ince, and E.C. Boerma. 2015. Effects of ketanserin on microcirculatory alterations in septic shock: An open-label pilot study. Journal of Critical Care 30: 1156–1162.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Stefan Juhas
    • 1
    • 2
  • Nicholas Harris
    • 3
    • 4
  • Gabriela Il’kova
    • 1
    • 5
  • Pavol Rehák
    • 1
  • Ferenc Zsila
    • 6
  • Faina Yurgenzon Kogan
    • 3
  • Orly Lahmy
    • 3
  • Regina Zhuk
    • 3
  • Paul Gregor
    • 3
    • 7
  • Juraj Koppel
    • 1
  1. 1.Institute of Animal PhysiologySlovak Academy of SciencesKosiceSlovakia
  2. 2.GYN-FIV a.s.BratislavaSlovakia
  3. 3.Rimonyx Pharmaceuticals Ltd.Ness-ZionaIsrael
  4. 4.Ephraim Katzir Department of Biotechnology EngineeringORT Braude Academic College of EngineeringKarmielIsrael
  5. 5.Institute of Animal Physiology and Genetics of the ASCR, v. v. i.LibechovCzech Republic
  6. 6.Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  7. 7.GISMO Therapeutics Inc.LexingtonUSA

Personalised recommendations