Advertisement

Inflammation

, Volume 41, Issue 1, pp 174–182 | Cite as

Acute Lung Injury in Response to Intratracheal Instillation of Lipopolysaccharide in an Animal Model of Emphysema Induced by Elastase

  • Maria Aparecida Esteves Rabelo
  • Leda Marília Fonseca Lucinda
  • Maycon Moura Reboredo
  • Lídia Maria Carneiro da Fonseca
  • Fernando Fonseca Reis
  • Thaís Fernanda Fazza
  • Danielle Ribeiro Brega
  • Flavia de Paoli
  • Adenilson de Souza da Fonseca
  • Bruno Valle Pinheiro
ORIGINAL ARTICLE

Abstract

The response of lungs with emphysema to an acute lung injury (ALI) remains unclear. This study compared the lung response to intratracheal instillation of lipopolysaccharide (LPS) in rats with and without emphysema. Twenty-four Wistar rats were randomized to four groups: control group (C-G), ALI group (ALI-G), emphysema group (E-G), emphysema and ALI group (E-ALI-G). Euthanasia and the following analysis were performed 24 h after ALI induction: lung histology, bronchoalveolar lavage (BAL), mRNA expression of inflammatory mediators, and blood gas measures. The histological analysis showed that animals of ALI-G (0.55 ± 0.15) and E-ALI-G (0.69 ± 0.08) had a higher ALI score compared to C-G (0.12 ± 0.04) and E-G (0.16 ± 0.04) (p < 0.05). The analysis of each component of the score demonstrated that ALI-G and E-ALI-G had greater alveolar and interstitial neutrophil infiltration, as well as greater amount of alveolar proteinaceous debris. Comparing the two groups that received LPS, there was a trend of higher ALI in the E-ALI-G, specially due to a higher neutrophil infiltration in the alveolar spaces and a higher septal thickening. Total cell count (E-G = 3.09 ± 0.83; ALI-G = 4.45 ± 1.9; E-ALI-G = 5.9 ± 2.1; C-G = 0.73 ± 0.37 × 105) and neutrophil count (E-G = 0.69 ± 0.35; ALI-G = 2.53 ± 1.09; E-ALI-G = 3.86 ± 1.4; C-G = 0.09 ± 0.07 × 105) in the BAL were higher in the groups E-G, ALI-G, and E-ALI-G when compared to C-G (p < 0.05). The IL-6, TNF-α, and CXCL2 mRNA expressions were higher in the animals that received LPS (ALI-G and E-ALI-G) compared to the C-G and E-G (p < 0.05). No statistically significant difference was observed in the BAL cellularity and in the expression of inflammatory mediators between the ALI-G and the E-ALI-G. The severity of ALI in response to intratracheal instillation of LPS did not show difference in rats with and without intratracheal-induced emphysema.

KEY WORDS

emphysema acute lung injury experimental model lipopolysaccharide intratracheal 

Notes

Funding

This study was funded by a research grant from Rede Mineira TOXIFAR, Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), and Center of Reproductive Biology.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This study was approved by the Ethics Committee in Animal Experiments of Federal University of Juiz de Fora and all procedures were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

References

  1. 1.
    Macnee, W. 2005. Pathogenesis of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society 2 (4): 258–266.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Finkelstein, R., R.S. Fraser, H. Ghezzo, and M.G. Cosio. 1995. Alveolar inflammation and its relation to emphysema in smokers. American Journal of Respiratory and Critical Care Medicine 152 (5 Pt 1): 1666–1672.CrossRefPubMedGoogle Scholar
  3. 3.
    Retamales, I., W. Elliott, B. Meshi, H.O. Coxson, P.D. Pare, F.C. Sciurba, R.M. Rogers, S. Hayashi, and J.C. Hogg. 2001. Amplification of inflammation in emphysema and its association with latent adenoviral infection. American Journal of Respiratory and Critical Care Medicine 164 (3): 469–473.CrossRefPubMedGoogle Scholar
  4. 4.
    Baines, K.J., J.L. Simpson, and P.G. Gibson. 2011. Innate immune responses are increased in chronic obstructive pulmonary disease. PLoS One 6: e18426.  https://doi.org/10.1371/journal.pone.0018426.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hodge, S., G. Hodge, R. Scicchitano, P.N. Reynolds, and M. Holmes. 2003. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunology and Cell Biology 81 (4): 289–296.CrossRefPubMedGoogle Scholar
  6. 6.
    Berenson, C.S., C.T. Wrona, L.J. Grove, J. Maloney, M.A. Garlipp, P.K. Wallace, C.C. Stewart, and S. Sethi. 2006. Impaired alveolar macrophage response to Haemophilus antigens in chronic obstructive lung disease. American Journal of Respiratory and Critical Care Medicine 174 (1): 31–40.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pang, B., W. Hong, S.L. West-Barnette, N.D. Kock, and W.E. Swords. 2008. Diminished ICAM-1 expression and impaired pulmonary clearance of nontypeable Haemophilus influenzae in a mouse model of chronic obstructive pulmonary disease/emphysema. Infection and Immunity 76 (11): 4959–4967.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Taylor, A.E., T.K. Finney-Hayward, J.K. Quint, C.M. Thomas, S.J. Tudhope, J.A. Wedzicha, P.J. Barnes, and L.E. Donnelly. 2010. Defective macrophage phagocytosis of bacteria in COPD. The European Respiratory Journal 35 (5): 1039–1047.CrossRefPubMedGoogle Scholar
  9. 9.
    Kaur, M., and D. Singh. 2013. Neutrophil chemotaxis caused by chronic obstructive pulmonary disease alveolar macrophages: the role of CXCL8 and the receptors CXCR1/CXCR2. Journal of Pharmacology and Experimental Therapeutics 347 (1): 173–180.CrossRefPubMedGoogle Scholar
  10. 10.
    Owen, C.A., M.A. Campbell, P.L. Sannes, S.S. Boukedes, and E.J. Campbell. 1995. Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. The Journal of Cell Biology 131 (3): 775–789.CrossRefPubMedGoogle Scholar
  11. 11.
    Fonseca, L.M., M.M. Reboredo, L.M. Lucinda, T.F. Fazza, M.A. Rabelo, A.S. Fonseca, F. de Paoli, and B.V. Pinheiro. 2016. Emphysema induced by elastase enhances acute inflammatory pulmonary response to intraperitoneal LPS in rats. International Journal of Experimental Pathology 97 (6): 430–437.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tokairin, Y., Y. Shibata, M. Sata, S. Abe, N. Takabatake, A. Igarashi, T. Ishikawa, S. Inoue, and I. Kubota. 2008. Enhanced immediate inflammatory response to Streptococcus pneumoniae in the lungs of mice with pulmonary emphysema. Respirology 13 (3): 324–332.CrossRefPubMedGoogle Scholar
  13. 13.
    Inoue, S., H. Nakamura, K. Otake, H. Saito, K. Terashita, J. Sato, H. Takeda, and H. Tomoike. 2003. Impaired pulmonary inflammatory responses are a prominent feature of Streptococcal pneumonia in mice with experimental emphysema. American Journal of Respiratory and Critical Care Medicine 167 (5): 764–770.CrossRefPubMedGoogle Scholar
  14. 14.
    Black, P.N., P.S.T. Ching, B. Beaumont, S. Ranasinghe, G. Taylor, and M.J. Merrilees. 2008. Changes in elastic fibres in the small airways and alveoli in COPD. The European Respiratory Journal 31 (3): 998–1004.CrossRefPubMedGoogle Scholar
  15. 15.
    Matute-Bello, G., G. Downey, B.B. Moore, S.D. Groshong, M.A. Matthay, A.S. Slutsky, W.M. Kuebler, and Acute Lung Injury in Animals Study Group. 2011. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. American Journal of Respiratory and Critical Care Medicine 44 (5): 725–738.Google Scholar
  16. 16.
    Dunnill, M.S. 1962. Quantitative methods in the study of pulmonary pathology. Thorax 17 (4): 320–328.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yokoyama, E., Z. Nambu, I. Uchiyama, and H. Kyono. 1987. An emphysema model in rats treated intratracheally with elastase. Environmental Research Journal 42 (2): 340–352.CrossRefGoogle Scholar
  18. 18.
    Kırkıl, G., M.H. Muz, F. Deveci, T. Turgut, F. İlhan, and I. Özercan. 2007. Effect of bosentan on the production of proinflammatory cytokines in a rat model of emphysema. Experimental & Molecular Medicine 39 (5): 614–620.CrossRefGoogle Scholar
  19. 19.
    Van de Lest, C.H.A., E.M.M. Versteeg, J.H. Veerkamp, and T.H. Van Kuppevelt. 1995. Digestion of proteoglycans in porcine pancreatic elastase-induced emphysema in rats. The European Respiratory Journal 8 (2): 238–245.CrossRefPubMedGoogle Scholar
  20. 20.
    Vecchiola, A., J.F. de la Llera, R. Ramírez, P. Olmos, C.I. Herrera, and G. Borzone. 2011. Differences in acute lung response to elastase instillation in two rodent species may determine differences in severity of emphysema development. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 301 (1): R148–R158.CrossRefPubMedGoogle Scholar
  21. 21.
    Landgraf, M.A., R.C. Silva, M. Corrêa-Costa, M.I. Hiyane, M.H. Carvalho, R.G. Landgraf, and N.O. Câmara. 2014. Leptin downregulaes LPS-induced lung injury: role of corticosterone and insulin. Cellular Physiology and Biochemistry 33 (3): 835–846.CrossRefPubMedGoogle Scholar
  22. 22.
    Silva, P.L., L. Moraes, R.S. Santos, C. Samary, M.B. Ramos, C.L. Santos, M.M. Morales, V.L. Capelozzi, C.S. Garcia, M.G. de Abreu, P. Pelosi, J.J. Marini, and P.R. Rocco. 2013. Recruitment maneuvers modulate epithelial and endothelial cell response according to acute lung injury etiology. Critical Care Medicine 41 (10): e256–e265.CrossRefPubMedGoogle Scholar
  23. 23.
    Kabir, K., J.P. Gelinas, M. Chen, D. Chen, D. Zhang, X. Luo, J.H. Yang, D. Carter, and R. Rabinovici. 2002. Characterization of a murine model of endotoxin-induced acute lung injury. Shock 17 (4): 300–303.CrossRefPubMedGoogle Scholar
  24. 24.
    Santana, M.C., C.S. Garcia, D.G. Xisto, L.K. Nagato, R.M. Lassance, L.F. Prota, F.M. Ornellas, V.L. Capelozzi, M.M. Morales, W.A. Zin, P. Pelosi, and P.R. Rocco. 2009. Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury. Respiratory Physiology and Neurobiology 167 (2): 181–188.CrossRefPubMedGoogle Scholar
  25. 25.
    Wiener-Kronish, J.P., K.H. Albertine, and M.A. Matthay. 1991. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. Journal of Clinical Investigation 8 (3): 864–875.CrossRefGoogle Scholar
  26. 26.
    Shaykhiev, R., and R.G. Crystal. 2013. Innate immunity and chronic obstructive pulmonary disease: a mini-review. Gerontology 59 (6): 481–489.CrossRefPubMedGoogle Scholar
  27. 27.
    Sajjan, U., S. Ganesan, A.T. Comstock, J. Shim, Q. Wang, D.R. Nagarkar, Y. Zhao, A.M. Goldsmith, J. Sonstein, M.J. Linn, J.L. Curtis, and M.B. Hershenson. 2009. Elastase- and LPS-exposed mice display altered responses to rhinovirus infection. American Journal of Physiology, Lung Cellular and Molecular Physiology 297 (5): L931–L944.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang, D., Y. Wang, and Y.N. Liu. 2010. Experimental pulmonary infection and colonization of Haemophilus influenzae in emphysematous hamsters. Pulmonary Pharmacology and Therapeutics 23 (4): 292–299.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Maria Aparecida Esteves Rabelo
    • 1
    • 2
  • Leda Marília Fonseca Lucinda
    • 1
    • 2
    • 3
  • Maycon Moura Reboredo
    • 1
    • 3
  • Lídia Maria Carneiro da Fonseca
    • 1
    • 3
  • Fernando Fonseca Reis
    • 1
    • 3
  • Thaís Fernanda Fazza
    • 1
    • 3
  • Danielle Ribeiro Brega
    • 1
  • Flavia de Paoli
    • 2
  • Adenilson de Souza da Fonseca
    • 4
  • Bruno Valle Pinheiro
    • 1
    • 3
  1. 1.Pulmonary Research LaboratoryFederal University of Juiz de ForaJuiz de ForaBrazil
  2. 2.Department of Morphology, Institute of Biological SciencesFederal University of Juiz de ForaJuiz de ForaBrazil
  3. 3.Center of Reproductive BiologyFederal University of Juiz de ForaJuiz de ForaBrazil
  4. 4.Department of Biophysics and Biometry, Institute of Biology Roberto Alcantara GomesRio de Janeiro State UniversityRio de JaneiroBrazil

Personalised recommendations