Advertisement

Inflammation

, Volume 40, Issue 6, pp 2129–2136 | Cite as

Biomechanical Stretch Induces Inflammation, Proliferation, and Migration by Activating NFAT5 in Arterial Smooth Muscle Cells

  • Wei Cao
  • Donghui Zhang
  • Qiannan Li
  • Yue Liu
  • Shenhong Jing
  • Jinjin Cui
  • Wei Xu
  • Shufeng Li
  • Jingjin Liu
  • Bo YuEmail author
ORIGINAL ARTICLE

Abstract

The increasing wall stress as is elicited by arterial hypertension promotes their reorganization in the vessel wall which may lead to arterial stiffening and contractile dysfunction. The nuclear factor of activated T cells 5 (NFAT5) pathway plays a role in regulating growth and differentiation in various cell types. We investigated whether the NFAT5 pathway was involved in the regulation of biomechanical stretch-induced human arterial smooth muscle cell (HUASMC) proliferation, inflammation, and migration. Herein, we showed that stretch promoted the expression of NFAT5 in human arterial smooth muscle cells and regulated through activation of c-Jun N-terminal kinase under these conditions. This may contribute to an improved activity of HUASMCs and thus promote reorganization in vascular remodeling processes such as hypertension-induced arterial stiffening and contractile dysfunction.

KEY WORDS

inflammation proliferation migration NFAT5 arterial smooth muscle cells 

Notes

Acknowledgements

This research project was supported by the National Natural Science Foundation of China Grant No. 81400294.

References

  1. 1.
    Olivetti, G., M. Melissari, G. Marchetti, and P. Anversa. 1982. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circulation Research 51 (1): 19–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Feldner, A., H. Otto, S. Rewerk, M. Hecker, and T. Korff. 2011. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. The FASEB Journal 25 (10): 3613–3621.CrossRefPubMedGoogle Scholar
  3. 3.
    Pfisterer, L., A. Feldner, M. Hecker, and T. Korff. 2012. Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovascular Research 96 (1): 120–129.CrossRefPubMedGoogle Scholar
  4. 4.
    Nordström, I., K. Dreja, U. Malmqvist, and P. Hellstrand. 2000. Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circulation Research 87 (3): 228–234.CrossRefPubMedGoogle Scholar
  5. 5.
    Lee, Samuel, and Richard T. Lee. 2010. Mechanical stretch and intimal hyperplasia: the missing link?[J]. Arteriosclerosis Thrombosis & Vascular Biology 30 (3): 459–460.Google Scholar
  6. 6.
    Li, S., D.Z. Wang, Z. Wang, J.A. Richardson, and E.N. Olson. 2003. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences 100 (16): 9366–9370.CrossRefGoogle Scholar
  7. 7.
    Halterman, J.A., H.M. Kwon, and B.R. Wamhoff. 2012. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). American Journal of Physiology-Cell Physiology 302 (1): C1–C8.CrossRefPubMedGoogle Scholar
  8. 8.
    Ho, S.N. 2003. The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Archives of Biochemistry and Biophysics 413 (2): 151–157.CrossRefPubMedGoogle Scholar
  9. 9.
    Woo, S., S. Lee, and M.H. Kwon. 2002. TonEBP transcriptional activator in the cellular response to increased osmolality. Pflügers Archiv European Journal of Physiology 444 (5): 579–585.CrossRefPubMedGoogle Scholar
  10. 10.
    Jauliac, S., C. López-Rodriguez, L.M. Shaw, L.F. Brown, A. Rao, and A. Toker. 2002. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology 4 (7): 540–544.CrossRefPubMedGoogle Scholar
  11. 11.
    O'Connor, R.S., S.T. Mills, K.A. Jones, S.N. Ho, and G.K. Pavlath. 2007. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. Journal of Cell Science 120 (1): 149–159.CrossRefPubMedGoogle Scholar
  12. 12.
    Go, W.Y., X. Liu, M.A. Roti, F. Liu, and S.N. Ho. 2004. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proceedings of the National Academy of Sciences of the United States of America 101 (29): 10673–10678.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Halterman, J.A., H.M. Kwon, R. Zargham, P.D. Bortz, and B.R. Wamhoff. 2011. Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (10): 2287–2296.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yoon, H.J., S. You, S.A. Yoo, N.H. Kim, H.M. Kwon, C.H. Yoon, C.S. Cho, D. Hwang, and W.U. Kim. 2011. NF-AT5 is a critical regulator of inflammatory arthritis. Arthritis & Rheumatology 63 (7): 1843–1852.CrossRefGoogle Scholar
  15. 15.
    Machnik, A., W. Neuhofer, J. Jantsch, A. Dahlmann, T. Tammela, K. Machura, J.K. Park, F.X. Beck, D.N. Müller, W. Derer, and J. Goss. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature Medicine 15 (5): 545–552.CrossRefPubMedGoogle Scholar
  16. 16.
    Roth, I., V. Leroy, H.M. Kwon, P.Y. Martin, E. Féraille, and U. Hasler. 2010. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-κB activity. Molecular Biology of the Cell 21 (19): 3459–3474.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Buxadé, M., G. Lunazzi, J. Minguillón, S. Iborra, R. Berga-Bolaños, M. del Val, J. Aramburu, and C. López-Rodríguez. 2012. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine 209 (2): 379–393.Google Scholar
  18. 18.
    Haudenschild, C.C., J.O. Grunwald, and A.V. Chobanian. 1985. Effects of hypertension on migration and proliferation of smooth muscle in culture. Hypertension 7 (3 Pt 2): I101.CrossRefPubMedGoogle Scholar
  19. 19.
    Intengan, H.D., and E.L. Schiffrin. 2000. Structure and mechanical properties of resistance arteries in hypertension. Hypertension 36 (3): 312–318.CrossRefPubMedGoogle Scholar
  20. 20.
    Brady, P.S., E.A. Park, J.S. Liu, R.W. Hanson, and L.J. Brady. 1992. Isolation and characterization of the promoter for the gene coding for the 68 kDa carnitine palmitoyltransferase from the rat. Biochemical Journal 286 (3): 779–783.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang, Z., D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, and E.N. Olson. 2004. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428 (6979): 185–189.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen, J., C.M. Kitchen, J.W. Streb, and J.M. Miano. 2002. Myocardin: a component of a molecular switch for smooth muscle differentiation. Journal of Molecular and Cellular Cardiology 34 (10): 1345–1356.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wei Cao
    • 1
    • 2
  • Donghui Zhang
    • 1
    • 2
  • Qiannan Li
    • 3
  • Yue Liu
    • 4
  • Shenhong Jing
    • 1
    • 2
  • Jinjin Cui
    • 1
    • 2
  • Wei Xu
    • 1
    • 2
  • Shufeng Li
    • 1
    • 2
  • Jingjin Liu
    • 1
    • 2
  • Bo Yu
    • 1
    • 2
    Email author
  1. 1.Department of CardiologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  2. 2.The Key Laboratory of Myocardial IschemiaChinese Ministry of EducationHarbinPeople’s Republic of China
  3. 3.Department of GeriatricThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  4. 4.Department of CardiologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina

Personalised recommendations