, Volume 40, Issue 5, pp 1606–1621 | Cite as

Thrombospondin-1 Production Regulates the Inflammatory Cytokine Secretion in THP-1 Cells Through NF-κB Signaling Pathway

  • Tian Xing
  • Yao Wang
  • Wen-jie Ding
  • Yuan-ling Li
  • Xiao-dong Hu
  • Cong Wang
  • Ao Ding
  • Ji-long Shen


Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. Recent data have shown that macrophages from TSP-1-deficient mice have a reduced inflammatory phenotype, suggesting that TSP-1 plays a part in macrophage activation. DNA microarray approach revealed that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) may induce the enhanced TSP-1 expression in human monocytes, suggesting a role of TSP-1-mediated pathogenesis in periodontitis. Until recently, the function of TSP-1 has been a matter of debate. In this study, we explored the role of TSP-1 in inflammatory cytokine secretions and its putative mechanism in pathogenesis of periodontitis. We demonstrated that TSP-1 expression was significantly upregulated in gingival tissues with periodontitis and in P. gingivalis LPS-stimulated THP-1 cells. Deficiency of TSP-1 by transfecting siRNAs decreased IL-6, IL-1β, and TNF-α secretions in THP-1 cells, whereas overexpression of TSP-1 resulted in an upregulation of IL-6, IL-1β, and TNF-α productions. Additional experiments showed that Pyrrolidine dithiocarbamate (PDTC) inhibited IL-6, IL-1β, and TNF-α expression induced by overexpression of TSP-1, accompanying with downregulation of phosphorylated p65 and IκBα protein levels in response to P. gingivalis LPS. These results indicated that TSP-1 played a significant role in P. gingivalis LPS-initiated inflammatory cytokines (IL-6, IL-1β, and TNF-α) secretions of THP-1 cells, and the NF-κB signaling is involved in its induction of expression. Thus, TSP-1 effectively elevated P. gingivalis LPS-induced inflammation mediated by the NF-κB pathway and may be critical for pathology of periodontitis.


TSP-1 P. gingivalis LPS IL-6 IL-1β TNF-α NF-κB signaling PDTC 



This study has been supported by the National Natural Science Foundation of China (81600845), the Provincial Natural Science Research Project of Colleges, and the Universities of Anhui Province (No. KJ2016A348).

Compliance with Ethical Standards

The study was approved by the Health Human Research Ethics Committee of Anhui Medical University.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Paquette, D.W. 2005. Pocket depth reduction as an outcome measure of inflammation and soft tissue changes in periodontitis trials. Journal of the International Academy of Periodontology 7 (4 Suppl): 147–156.PubMedGoogle Scholar
  2. 2.
    Brock, G.R., C.J. Butterworth, J.B. Matthews, and I.L. Chapple. 2004. Local and systemic total antioxidant capacity in periodontitis and health. Journal of Clinical Periodontology 31 (7): 515–521. doi: 10.1111/j.1600-051X.2004.00509.x.CrossRefPubMedGoogle Scholar
  3. 3.
    Banu, S., N.R. Jabir, R. Mohan, N.C. Manjunath, M.A. Kamal, K.R. Kumar, S.K. Zaidi, M.S. Khan, and S. Tabrez. 2015. Correlation of toll-like receptor 4, interleukin-18, transaminases, and uric acid in patients with chronic periodontitis and healthy adults. Journal of Periodontology 86 (3): 431–439. doi: 10.1902/jop.2014.140414.CrossRefPubMedGoogle Scholar
  4. 4.
    Shaker, O.G., and N.A. Ghallab. 2012. IL-17 and IL-11 GCF levels in aggressive and chronic periodontitis patients: relation to PCR bacterial detection. Mediators of Inflammation 2012: 174764. doi: 10.1155/2012/174764.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yamaguchi, T., A. Movila, S. Kataoka, W. Wisitrasameewong, M. Ruiz Torruella, M. Murakoshi, S. Murakami, and T. Kawai. 2016. Proinflammatory M1 macrophages inhibit RANKL-induced osteoclastogenesis. Infection and Immunity 84 (10): 2802–2812. doi: 10.1128/IAI.00461-16.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Abe, T., M. AlSarhan, M.R. Benakanakere, T. Maekawa, D.F. Kinane, M.P. Cancro, J.M. Korostoff, and G. Hajishengallis. 2015. The B cell-stimulatory cytokines BLyS and APRIL are elevated in human periodontitis and are required for B cell-dependent bone loss in experimental murine periodontitis. Journal of Immunology 195 (4): 1427–1435. doi: 10.4049/jimmunol.1500496.CrossRefGoogle Scholar
  7. 7.
    Liukkonen, J., U.K. Gursoy, P.J. Pussinen, A.L. Suominen, and E. Kononen. 2016. Salivary concentrations of interleukin (IL)-1beta, IL-17A, and IL-23 vary in relation to periodontal status. Journal of Periodontology 87 (12): 1484–1491. doi: 10.1902/jop.2016.160146.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhao, J.J., X.P. Feng, X.L. Zhang, and K.Y. Le. 2012. Effect of Porphyromonas gingivalis and lactobacillus acidophilus on secretion of IL1B, IL6, and IL8 by gingival epithelial cells. Inflammation 35 (4): 1330–1337. doi: 10.1007/s10753-012-9446-5.CrossRefPubMedGoogle Scholar
  9. 9.
    Fordham, J.B., J. Hua, S.R. Morwood, L.P. Schewitz-Bowers, D.A. Copland, A.D. Dick, and L.B. Nicholson. 2012. Environmental conditioning in the control of macrophage thrombospondin-1 production. Scientific Reports 2: 512. doi: 10.1038/srep00512.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ortiz-Masia, D., I. Diez, S. Calatayud, C. Hernandez, J. Cosin-Roger, J. Hinojosa, J.V. Esplugues, and M.D. Barrachina. 2012. Induction of CD36 and thrombospondin-1 in macrophages by hypoxia-inducible factor 1 and its relevance in the inflammatory process. PloS One 7 (10): e48535. doi: 10.1371/journal.pone.0048535.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lawler, J. 2002. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. Journal of Cellular and Molecular Medicine 6 (1): 1–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Bonnefoy, A., K. Daenens, H.B. Feys, R. De Vos, P. Vandervoort, J. Vermylen, J. Lawler, and M.F. Hoylaerts. 2006. Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial VWF from cleavage by ADAMTS13. Blood 107 (3): 955–964. doi: 10.1182/blood-2004-12-4856.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bonnefoy, A., R. Moura, and M.F. Hoylaerts. 2008. The evolving role of thrombospondin-1 in hemostasis and vascular biology. Cellular and Molecular Life Sciences 65 (5): 713–727. doi: 10.1007/s00018-007-7487-y.CrossRefPubMedGoogle Scholar
  14. 14.
    Narizhneva, N.V., O.V. Razorenova, E.A. Podrez, J. Chen, U.M. Chandrasekharan, P.E. DiCorleto, E.F. Plow, E.J. Topol, and T.V. Byzova. 2005. Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium. The FASEB Journal 19 (9): 1158–1160. doi: 10.1096/fj.04-3310fje.PubMedGoogle Scholar
  15. 15.
    Schellings, M.W., G.C. van Almen, E.H. Sage, and S. Heymans. 2009. Thrombospondins in the heart: potential functions in cardiac remodeling. J Cell Commun Signal 3 (3–4): 201–213. doi: 10.1007/s12079-009-0070-6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vallejo, A.N., L.O. Mugge, P.A. Klimiuk, C.M. Weyand, and J.J. Goronzy. 2000. Central role of thrombospondin-1 in the activation and clonal expansion of inflammatory T cells. Journal of Immunology 164 (6): 2947–2954.CrossRefGoogle Scholar
  17. 17.
    Suzuki, T., N. Iwamoto, S. Yamasaki, A. Nishino, Y. Nakashima, Y. Horai, S.Y. Kawashiri, et al. 2015. Upregulation of thrombospondin 1 expression in synovial tissues and plasma of rheumatoid arthritis: role of transforming growth factor-beta1 toward fibroblast-like synovial cells. The Journal of Rheumatology 42 (6): 943–947. doi: 10.3899/jrheum.141292.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao, Y., Z. Xiong, E.J. Lechner, P.A. Klenotic, B.J. Hamburg, M. Hulver, A. Khare, et al. 2014. Thrombospondin-1 triggers macrophage IL-10 production and promotes resolution of experimental lung injury. Mucosal Immunology 7 (2): 440–448. doi: 10.1038/mi.2013.63.CrossRefPubMedGoogle Scholar
  19. 19.
    Bentley, A.A., and J.C. Adams. 2010. The evolution of thrombospondins and their ligand-binding activities. Molecular Biology and Evolution 27 (9): 2187–2197. doi: 10.1093/molbev/msq107.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Salajegheh, M., R. Raju, J. Schmidt, and M.C. Dalakas. 2007. Upregulation of thrombospondin-1(TSP-1) and its binding partners, CD36 and CD47, in sporadic inclusion body myositis. Journal of Neuroimmunology 187 (1–2): 166–174. doi: 10.1016/j.jneuroim.2007.04.022.CrossRefPubMedGoogle Scholar
  21. 21.
    Gokyu, M., H. Kobayashi, H. Nanbara, T. Sudo, Y. Ikeda, T. Suda, and Y. Izumi. 2014. Thrombospondin-1 production is enhanced by Porphyromonas gingivalis lipopolysaccharide in THP-1 cells. PloS One 9 (12): e115107. doi: 10.1371/journal.pone.0115107.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Artese, L., M.J. Simon, A. Piattelli, D.S. Ferrari, L.A. Cardoso, M. Faveri, T. Onuma, M. Piccirilli, V. Perrotti, and J.A. Shibli. 2011. Immunohistochemical analysis of inflammatory infiltrate in aggressive and chronic periodontitis: a comparative study. Clinical Oral Investigations 15 (2): 233–240. doi: 10.1007/s00784-009-0374-1.CrossRefPubMedGoogle Scholar
  23. 23.
    Lopez-Castejón, G., A. Baroja-Mazo, and P. Pelegrín. 2011. Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cellular and Molecular Life Sciences 68 (18): 3095–3107. doi: 10.1007/s00018-010-0609-y.CrossRefPubMedGoogle Scholar
  24. 24.
    Phipps, K.R., B.K. Chan, T.E. Madden, N.C. Geurs, M.S. Reddy, C.E. Lewis, and E.S. Orwoll. 2007. Longitudinal study of bone density and periodontal disease in men. Journal of Dental Research 86 (11): 1110–1114.CrossRefPubMedGoogle Scholar
  25. 25.
    Yoshihara, A., Y. Seida, N. Hanada, and H. Miyazaki. 2004. A longitudinal study of the relationship between periodontal disease and bone mineral density in community-dwelling older adults. Journal of Clinical Periodontology 31 (8): 680–684. doi: 10.1111/j.1600-051X.2004.00548.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Stenina, O.I., E.J. Topol, and E.F. Plow. 2007. Thrombospondins, their polymorphisms, and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 27 (9): 1886–1894. doi: 10.1161/ATVBAHA.107.141713.CrossRefPubMedGoogle Scholar
  27. 27.
    Resovi, A., D. Pinessi, G. Chiorino, and G. Taraboletti. 2014. Current understanding of the thrombospondin-1 interactome. Matrix Biology 37: 83–91. doi: 10.1016/j.matbio. 2014. 01.012.CrossRefPubMedGoogle Scholar
  28. 28.
    Hsieh, J.L., P.C. Shen, A.L. Shiau, I.M. Jou, C.H. Lee, C.R. Wang, M.L. Teo, and C.L. Wu. 2010. Intraarticular gene transfer of thrombospondin-1 suppresses the disease progression of experimental osteoarthritis. Journal of Orthopaedic Research 28 (10): 1300–1306. doi: 10.1002/jor.21134.CrossRefPubMedGoogle Scholar
  29. 29.
    Velasco, P., R. Huegel, J. Brasch, J.M. Schroder, M. Weichenthal, E. Stockfleth, T. Schwarz, J. Lawler, M. Detmar, and B. Lange-Asschenfeldt. 2009. The angiogenesis inhibitor thrombospondin-1 inhibits acute cutaneous hypersensitivity reactions. The Journal of Investigative Dermatology 129 (8): 2022–2030. doi: 10.1038/jid.2008.447.CrossRefPubMedGoogle Scholar
  30. 30.
    Soriano-Romani, L., L. Garcia-Posadas, A. Lopez-Garcia, L. Paraoan, and Y. Diebold. 2015. Thrombospondin-1 induces differential response in human corneal and conjunctival epithelial cells lines under in vitro inflammatory and apoptotic conditions. Experimental Eye Research 134: 1–14. doi: 10.1016/j.exer.2015.03.004.CrossRefPubMedGoogle Scholar
  31. 31.
    Martin-Manso, G., D.H. Navarathna, S. Galli, D.R. Soto-Pantoja, S.A. Kuznetsova, M. Tsokos, and D.D. Roberts. 2012. Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PloS One 7 (11): e48775. doi: 10.1371/journal.pone.0048775.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McMaken, S., M.C. Exline, P. Mehta, M. Piper, Y. Wang, S.N. Fischer, C.A. Newland, et al. 2011. Thrombospondin-1 contributes to mortality in murine sepsis through effects on innate immunity. PloS One 6 (5): e19654. doi: 10.1371/journal.pone.0019654.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Loos, B.G., D.W. Dyer, T.S. Whittam, and R.K. Selander. 1993. Genetic structure of populations of Porphyromonas gingivalis associated with periodontitis and other oral infections. Infection and Immunity 61 (1): 204–212.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Bender, P., W.B. Burgin, A. Sculean, and S. Eick. 2016. Serum antibody levels against Porphyromonas gingivalis in patients with and without rheumatoid arthritis - a systematic review and meta-analysis. Clinical Oral Investigations. doi: 10.1007/s00784-016-1938-5.
  35. 35.
    Deleon-Pennell, K.Y., L.E. de Castro Bras, and M.L. Lindsey. 2013. Circulating Porphyromonas gingivalis lipopolysaccharide resets cardiac homeostasis in mice through a matrix metalloproteinase-9-dependent mechanism. Physiol Rep 1 (5): e00079. doi: 10.1002/phy2.79.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Park, Y.D., Y.S. Kim, Y.M. Jung, S.I. Lee, Y.M. Lee, J.B. Bang, and E.C. Kim. 2012. Porphyromonas gingivalis lipopolysaccharide regulates interleukin (IL)-17 and IL-23 expression via SIRT1 modulation in human periodontal ligament cells. Cytokine 60 (1): 284–293. doi: 10.1016/j.cyto.2012.05.021.CrossRefPubMedGoogle Scholar
  37. 37.
    Morandini, A.C., P.P. Chaves Souza, E.S. Ramos-Junior, D.T. Brozoski, C.R. Sipert, C.A. Souza Costa, and C.F. Santos. 2013. Toll-like receptor 2 knockdown modulates interleukin (IL)-6 and IL-8 but not stromal derived factor-1 (SDF-1/CXCL12) in human periodontal ligament and gingival fibroblasts. Journal of Periodontology 84 (4): 535–544. doi: 10.1902/jop.2012.120177.CrossRefPubMedGoogle Scholar
  38. 38.
    Perego, C., S. Fumagalli, E.R. Zanier, E. Carlino, N. Panini, E. Erba, and M.G. De Simoni. 2016. Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury. Neurobiology of Disease 96: 284–293. doi: 10.1016/j.nbd.2016.09.017.CrossRefPubMedGoogle Scholar
  39. 39.
    Distler, J.H., A. Jungel, M. Pileckyte, J. Zwerina, B.A. Michel, R.E. Gay, O. Kowal-Bielecka, et al. 2007. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis and Rheumatism 56 (12): 4203–4215. doi: 10.1002/art.23074.CrossRefPubMedGoogle Scholar
  40. 40.
    Deininger, M.H., S. Winkler, P.G. Kremsner, R. Meyermann, and H.J. Schluesener. 2003. Angiogenic proteins in brains of patients who died with cerebral malaria. Journal of Neuroimmunology 142 (1–2): 101–111.CrossRefPubMedGoogle Scholar
  41. 41.
    Mittal, R., I. Gonzalez-Gomez, and N.V. Prasadarao. 2010. Escherichia coli K1 promotes the ligation of CD47 with thrombospondin-1 to prevent the maturation of dendritic cells in the pathogenesis of neonatal meningitis. Journal of Immunology 185 (5): 2998–3006. doi: 10.4049/ jimmunol.1001296.CrossRefGoogle Scholar
  42. 42.
    Kang, W., Z. Hu, and S. Ge. 2016. Healthy and inflamed gingival fibroblasts differ in their inflammatory response to Porphyromonas gingivalis lipopolysaccharide. Inflammation 39 (5): 1842–1852. doi: 10.1007/s10753-016-0421-4.CrossRefPubMedGoogle Scholar
  43. 43.
    Yamauchi, Y., M. Kuroki, T. Imakiire, H. Abe, H. Uchida, R. Beppu, Y. Yamashita, M. Kuroki, and T. Shirakusa. 2002. Thrombospondin-1 differentially regulates release of IL-6 and IL-10 by human monocytic cell line U937. Biochemical and Biophysical Research Communications 290 (5): 1551–1557. doi: 10.1006/bbrc.2002.6386.CrossRefPubMedGoogle Scholar
  44. 44.
    Chanput, W., J.J. Mes, and H.J. Wichers. 2014. THP-1 cell line: an in vitro cell model for immune modulation approach. International Immunopharmacology 23 (1): 37–45. doi: 10.1016/j.intimp.2014.08.002.CrossRefPubMedGoogle Scholar
  45. 45.
    Brunini, F., T.H. Page, M. Gallieni, and C.D. Pusey. 2016. The role of monocytes in ANCA-associated vasculitides. Autoimmunity Reviews 15 (11): 1046–1053. doi: 10.1016/j.autrev.2016.07.031.CrossRefPubMedGoogle Scholar
  46. 46.
    Lagha, A.B., and D. Grenier. 2016. Tea polyphenols inhibit the activation of NF-кB and the secretion of cytokines and matrix metalloproteinases by macrophages stimulated with Fusobacterium nucleatum. Scientific Reports 6: 34520. doi: 10.1038/srep34520.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tan, H.Y., N. Wang, S.W. Tsao, C.M. Che, M.F. Yuen, and Y. Feng. 2016. IRE1ɑ inhibition by natural compound genipin on tumour associated macrophages reduces growth of hepatocellular carcinoma. Oncotarget 7 (28): 43792–43804. doi: 10.18632/oncotarget.9696.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chatterjee, B., B. Banoth, T. Mukherjee, N. Taye, B. Vijayaragavan, S. Chattopadhyay, J. Gomes, and S. Basak. 2016. Late-phase synthesis of IкBɑ insulates the TLR4-activated canonical NF-кB pathway from noncanonical NF-кB signaling in macrophages. Science Signaling 9 (457): ra120. doi: 10.1126/scisignal.aaf1129.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li, R.J., C.Y. Gao, C. Guo, M.M. Zhou, J. Luo, and L.Y. Kong. 2016. The anti-inflammatory activities of two major withanolides from Physalis minima via acting on NF-кB, STAT3, and HO-1 in LPS-stimulated RAW264.7 cells. Inflammation. doi: 10.1007/s10753-016-0485-1.
  50. 50.
    Liang, D.Y., F. Liu, J.X. Chen, X.L. He, Y.L. Zhou, B.X. Ge, and L.J. Luo. 2016. Porphyromonas gingivalis infected macrophages upregulate CD36 expression via ERK/NF-кB pathway. Cellular Signalling 28 (9): 1292–1303. doi: 10.1016/j.cellsig.2016.05.017.CrossRefPubMedGoogle Scholar
  51. 51.
    Stein, E.V., T.W. Miller, K. Ivins-O'Keefe, S. Kaur, and D.D. Roberts. 2016. Secreted thrombospondin-1 regulates macrophage interleukin-1β production and activation through CD47. Scientific Reports 6: 19684. doi: 10.1038/srep19684.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tian Xing
    • 1
    • 2
  • Yao Wang
    • 3
  • Wen-jie Ding
    • 3
  • Yuan-ling Li
    • 3
  • Xiao-dong Hu
    • 3
  • Cong Wang
    • 3
  • Ao Ding
    • 4
  • Ji-long Shen
    • 1
    • 3
  1. 1.Department of ImmunologyAnhui Medical UniversityHefeiChina
  2. 2.Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and CollegeAnhui Medical UniversityHefeiChina
  3. 3.Department of Pathogen BiologyProvincial Laboratories of Pathogen Biology and ZoonosesHefeiChina
  4. 4.Stomatology Department of Affiliated Provincial HospitalAnhui Medical UniversityHefeiChina

Personalised recommendations