Advertisement

Inflammation

, Volume 40, Issue 5, pp 1497–1508 | Cite as

MeCP2 Regulates PTCH1 Expression Through DNA Methylation in Rheumatoid Arthritis

  • Zheng-hao Sun
  • Yan-hui Liu
  • Jun-da Liu
  • Dan-dan Xu
  • Xiao-feng Li
  • Xiao-ming Meng
  • Tao-tao Ma
  • Cheng Huang
  • Jun LiEmail author
ORIGINAL ARTICLE

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, in which pathogenesis is not clear. Many research demonstrated that fibroblast-like synoviocytes (FLSs) play a key role in RA pathogenesis, join in the cartilage injury and hyperplasia of the synovium, and contribute to the release of inflammatory cytokines. We used adjuvant arthritis (AA) rats as RA animal models. The methyl-CpG-binding protein 2 (MeCP2) enables the suppressed chromatin structure to be selectively detected in AA FLSs. Overexpression of this protein leads to an increase of integral methylation levels. Some research has confirmed the hedgehog (Hh) signaling pathway plays an important role in RA pathogenesis; furthermore, patched 1 (PTCH1) is a negative fraction of Hh signaling pathway. We used 5-aza-2′-deoxycytidine (5-azadc) as DNA methylation inhibitor. In our research, we found MeCP2 reduced PTCH1 expression in AA FLSs; 5-azadc obstructed the loss of PTCH1 expression. 5-Azadc, treatment of AA FLSs, also blocks the release of inflammatory cytokines. In order to probe the potential molecular mechanism, we assumed the epigenetic participation in the regulation of PTCH1. Results demonstrated that PTCH1 hypermethylation is related to the persistent FLS activation and inflammation in AA rats. Knockdown of MeCP2 using small-interfering RNA technique added PTCH1 expression in AA FLSs. Our results indicate that DNA methylation may offer molecule mechanisms, and the reduced PTCH1 methylation level could regulate inflammation through knockdown of MeCP2.

Graphical Abstract

PTCH1 is an inhibitory protein of the Hedgehog signaling pathway. Increased expression of PTCH1 can inhibit the expression of Gli1 and Shh, thereby inhibiting the activation of Hedgehog signaling pathway. Inactivated Hedgehog signaling pathway inhibits the secretion of IL-6 and TNF-α. MeCP2 mediates hypermethylation of PTCH1 gene and decreases the expression of PTCH1 protein, thus activating Hedgehog signaling pathway and increasing secretion of IL-6 and TNF-α

KEY WORDS

DNA methylation PTCH1 fibroblast-like synoviocytes methyl-CpG-binding protein 2 hedgehog signaling pathway rheumatoid arthritis inflammation 

Notes

Acknowledgements

This project was supported by the Key Fund Project of Anhui Education Department (KJ2016A364, KJ2016A365); the Anhui Provincial Natural Science Foundation (21408085MKL31); and the National Natural Science Foundation of China (81273526, 81473268).

Compliance with Ethical Standards

All the animal experiment processing was supervised and approved by the Animal Ethics Management Committee and Animal Experiments Guidelines.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    McInnes, I.B., and G. Schett. 2007. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology 7: 429–442.CrossRefPubMedGoogle Scholar
  2. 2.
    Ma, Z., B. Wang, M. Wang, X. Sun, Y. Tang, M. Li, F. Li, and X. Li. 2016. TL1A increased IL-6 production on fibroblast-like synoviocytes by preferentially activating TNF receptor 2 in rheumatoid arthritis. Cytokine 83: 92–98.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews 233: 233–255.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Choe, J.Y., J. Hun Kim, K.Y. Park, C.H. Choi, and S.K. Kim. 2016. Activation of dickkopf-1 and focal adhesion kinase pathway by tumour necrosis factor alpha induces enhanced migration of fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatology 55: 928–938.CrossRefPubMedGoogle Scholar
  5. 5.
    Miao, C.G., D. Qin, C.L. Du, H. Ye, W.J. Shi, Y.Y. Xiong, X.L. Zhang, H. Yu, J.F. Dou, S.T. Ma, et al. 2015. DNMT1 activates the canonical Wnt signaling in rheumatoid arthritis model rats via a crucial functional crosstalk between miR-152 and the DNMT1, MeCP2. International Immunopharmacology 28: 344–353.CrossRefPubMedGoogle Scholar
  6. 6.
    Boissier, M.C., L. Semerano, S. Challal, N. Saidenberg-Kermanac’h, and G. Falgarone. 2012. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. Journal of Autoimmunity 39: 222–228.CrossRefPubMedGoogle Scholar
  7. 7.
    Li, X.F., W.W. Shen, Y.Y. Sun, W.X. Li, Z.H. Sun, Y.H. Liu, L. Zhang, C. Huang, X.M. Meng, and J. Li. 2016. MicroRNA-20a negatively regulates expression of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes. Joint, Bone, Spine 83: 695–700.CrossRefPubMedGoogle Scholar
  8. 8.
    Baubec, T., R. Ivanek, F. Lienert, and D. Schubeler. 2013. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153: 480–492.CrossRefPubMedGoogle Scholar
  9. 9.
    Devailly, G., M. Grandin, L. Perriaud, P. Mathot, J.G. Delcros, Y. Bidet, A.P. Morel, J.Y. Bignon, A. Puisieux, P. Mehlen, and R. Dante. 2015. Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells. Nucleic Acids Research 43: 5838–5854.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moore, L.D., T. Le, and G. Fan. 2013. DNA methylation and its basic function. Neuropsychopharmacology 38: 23–38.CrossRefPubMedGoogle Scholar
  11. 11.
    Berman, B.P., D.J. Weisenberger, J.F. Aman, T. Hinoue, Z. Ramjan, Y. Liu, H. Noushmehr, C.P. Lange, C.M. van Dijk, R.A. Tollenaar, et al. 2011. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nature Genetics 44: 40–46.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Costello, J.F., M.C. Fruhwald, D.J. Smiraglia, L.J. Rush, G.P. Robertson, X. Gao, F.A. Wright, J.D. Feramisco, P. Peltomaki, J.C. Lang, et al. 2000. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics 24: 132–138.CrossRefPubMedGoogle Scholar
  13. 13.
    Ehrlich, M., G. Jiang, E. Fiala, J.S. Dome, M.C. Yu, T.I. Long, B. Youn, O.S. Sohn, M. Widschwendter, G.E. Tomlinson, et al. 2002. Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21: 6694–6702.CrossRefPubMedGoogle Scholar
  14. 14.
    Esteller, M., P.G. Corn, S.B. Baylin, and J.G. Herman. 2001. A gene hypermethylation profile of human cancer. Cancer Research 61: 3225–3229.PubMedGoogle Scholar
  15. 15.
    Heichman, K.A., and J.D. Warren. 2012. DNA methylation biomarkers and their utility for solid cancer diagnostics. Clinical Chemistry and Laboratory Medicine 50: 1707–1721.CrossRefPubMedGoogle Scholar
  16. 16.
    Ai, R., D. Hammaker, D.L. Boyle, R. Morgan, A.M. Walsh, S. Fan, G.S. Firestein, and W. Wang. 2016. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nature Communications 7: 11849.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Richardson, B.C., and D.R. Patel. 2014. Epigenetics in 2013. DNA methylation and miRNA: key roles in systemic autoimmunity. Nature Review Rheumatology 10: 72–74.CrossRefGoogle Scholar
  18. 18.
    Mor, A., S.B. Abramson, and M.H. Pillinger. 2005. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clinical Immunology 115: 118–128.CrossRefPubMedGoogle Scholar
  19. 19.
    Ecke, I., F. Petry, A. Rosenberger, S. Tauber, S. Monkemeyer, I. Hess, C. Dullin, S. Kimmina, J. Pirngruber, S.A. Johnsen, et al. 2009. Antitumor effects of a combined 5-aza-2′deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice. Cancer Research 69: 887–895.CrossRefPubMedGoogle Scholar
  20. 20.
    Spicer, L.J., S. Sudo, P.Y. Aad, L.S. Wang, S.Y. Chun, I. Ben-Shlomo, C. Klein, and A.J. Hsueh. 2009. The hedgehog-patched signaling pathway and function in the mammalian ovary: a novel role for hedgehog proteins in stimulating proliferation and steroidogenesis of theca cells. Reproduction 138: 329–339.CrossRefPubMedGoogle Scholar
  21. 21.
    Wilson, C.W., and P.T. Chuang. 2010. Mechanism and evolution of cytosolic Hedgehog signal transduction. Development 137: 2079–2094.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li, R., L. Cai, C.M. Hu, T.N. Wu, and J. Li. 2015. Expression of hedgehog signal pathway in articular cartilage is associated with the severity of cartilage damage in rats with adjuvant-induced arthritis. Journal of Inflammation-London 12: 24.CrossRefGoogle Scholar
  23. 23.
    Wang, M., S. Zhu, W. Peng, Q. Li, Z. Li, M. Luo, X. Feng, Z. Lin, and J. Huang. 2014. Sonic hedgehog signaling drives proliferation of synoviocytes in rheumatoid arthritis: a possible novel therapeutic target. Journal of Immunology Research 2014: 401903.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45: 669–675.CrossRefPubMedGoogle Scholar
  25. 25.
    Cerf, A., B.R. Cipriany, J.J. Benitez, and H.G. Craighead. 2011. Single DNA molecule patterning for high-throughput epigenetic mapping. Analytical Chemistry 83: 8073–8077.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lim, S.F., A. Karpusenko, J.J. Sakon, J.A. Hook, T.A. Lamar, and R. Riehn. 2011. DNA methylation profiling in nanochannels. Biomicrofluidics 5: 34106–341068.CrossRefPubMedGoogle Scholar
  27. 27.
    Qin, S., D. Sun, H. Li, X. Li, W. Pan, C. Yan, R. Tang, and X. Liu. 2016. The effect of SHH-Gli signaling pathway on the synovial fibroblast proliferation in rheumatoid arthritis. Inflammation 39: 503–512.CrossRefPubMedGoogle Scholar
  28. 28.
    Nakamura, M., H. Tanaka, Y. Nagayoshi, H. Nakashima, K. Tsutsumi, T. Ohtsuka, S. Takahata, M. Tanaka, and H. Okada. 2012. Targeting the hedgehog signaling pathway with interacting peptides to patched-1. Journal of Gastroenterology 47: 452–460.CrossRefPubMedGoogle Scholar
  29. 29.
    Qu, Y., S. Dang, and P. Hou. 2013. Gene methylation in gastric cancer. Clinica Chimica Acta 424: 53–65.CrossRefGoogle Scholar
  30. 30.
    Rauscher, G.H., J.K. Kresovich, M. Poulin, L. Yan, V. Macias, A.M. Mahmoud, U. Al-Alem, A. Kajdacsy-Balla, E.L. Wiley, D. Tonetti, and M. Ehrlich. 2015. Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer 15: 816.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zheng-hao Sun
    • 1
    • 2
    • 3
  • Yan-hui Liu
    • 1
    • 2
    • 3
  • Jun-da Liu
    • 1
    • 2
    • 3
  • Dan-dan Xu
    • 1
    • 2
    • 3
  • Xiao-feng Li
    • 1
    • 2
    • 3
  • Xiao-ming Meng
    • 1
    • 2
    • 3
  • Tao-tao Ma
    • 1
    • 2
    • 3
  • Cheng Huang
    • 1
    • 2
    • 3
  • Jun Li
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Pharmacy, The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative DrugsAnhui Medical UniversityHefeiChina
  2. 2.The Key Laboratory of Anti-inflammatory and Immune MedicinesMinistry of EducationHefeiChina
  3. 3.Institute for Liver DiseasesAnhui Medical UniversityHefeiChina

Personalised recommendations