Advertisement

Inflammation

, Volume 40, Issue 3, pp 818–831 | Cite as

Diallyl Disulfide Suppresses the Inflammation and Apoptosis Resistance Induced by DCA Through ROS and the NF-κB Signaling Pathway in Human Barrett’s Epithelial Cells

  • Cheng Feng
  • Yumei Luo
  • Yuanyuan Nian
  • Dong Liu
  • Xiaoran Yin
  • Jing Wu
  • Jia Di
  • Rong Zhang
  • Jun Zhang
ORIGINAL ARTICLE

Abstract

Barrett’s esophagus (BE) is generally accepted as the only precursor to esophageal adenocarcinoma (EAC). Deoxycholic acid (DCA)-induced inflammation and apoptotic resistance play an important role in the carcinogenesis and progression from BE to EAC. Diallyl disulfide (DADS) is a garlic-derived natural organosulfur compound. This study investigated whether DADS has chemopreventive effects against BE and the potentially related signaling pathway. BAR-T cells were treated with DCA in the presence or absence of DADS. An MTT assay was used to detect the viability of the cells. The apoptosis rate of the cells was measured by light microscopy and flow cytometry. ROS levels were determined by fluorescence microscopy and flow cytometry. Real-time PCR and ELISA were used to detect mRNA and protein levels, respectively. The levels of target proteins were also determined by western blot analysis. DADS did not inhibit cell viability in a certain concentration range. DADS, similar to the NF-κB inhibitor PDTC, inhibited the DCA-induced ROS production, inflammatory factors, IκBα phosphorylation, and expression of p50 in the nucleus in a dose-dependent manner. DADS also increased the cell apoptosis rate through down-regulating the level of Bcl-2. DADS has low cytotoxicity in BAR-T cells. It has an anti-inflammatory effect in BAR-T cells through inhibiting ROS and the NF-κB signaling pathway. Further, it abolishes the apoptotic resistance induced by DCA in an NF-κB/Bcl-2 dependent manner. DADS may be a good candidate for BE and EAC chemical prevention and therapy.

KEY WORDS

diallyl disulfide deoxycholic acid Barrett’s esophagus inflammation apoptotic resistance chemical prevention 

Abbreviations

BE

Barrett’s esophagus

EAC

Esophageal adenocarcinoma

DADS

Diallyl disulfide

ROS

Reactive oxygen species

DCA

Deoxycholic acid

Notes

Acknowledgments

This work was supported by the Important Clinic Project of the Chinese Ministry of Health (no.2007353).

References

  1. 1.
    Abdel-Latif, M.M., S. Duggan, J.V. Reynolds, and D. Kelleher. 2009. Inflammation and esophageal carcinogenesis. Current Opinion in Pharmacology 9(4): 396–404. doi: 10.1016/j.coph.2009.06.010.CrossRefPubMedGoogle Scholar
  2. 2.
    Abdel-Latif, M.M., J. O’Riordan, H.J. Windle, E. Carton, N. Ravi, D. Kelleher, and J.V. Reynolds. 2004. NF-kappaB activation in esophageal adenocarcinoma: relationship to Barrett’s metaplasia, survival, and response to neoadjuvant chemoradiotherapy. Annals of Surgery 239(4): 491–500.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ajani, J.A., T.A. D’Amico, K. Almhanna, D.J. Bentrem, S. Besh, J. Chao, P. Das, et al. 2015. Esophageal and esophagogastric junction cancers, version 1.2015. Journal of the National Comprehensive Cancer Network 13(2): 194–227.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen, K.H., K. Mukaisho, H. Sugihara, Y. Araki, G. Yamamoto, and T. Hattori. 2007. High animal-fat intake changes the bile-acid composition of bile juice and enhances the development of Barrett’s esophagus and esophageal adenocarcinoma in a rat duodenal-contents reflux model. Cancer Science 98(11): 1683–1688. doi: 10.1111/j.1349-7006.2007.00605.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Colleypriest, B.J., S.G. Ward, and D. Tosh. 2009. How does inflammation cause Barrett’s metaplasia? Current Opinion in Pharmacology 9(6): 721–726. doi: 10.1016/j.coph.2009.09.005.CrossRefPubMedGoogle Scholar
  6. 6.
    Czabotar, P.E., G. Lessene, A. Strasser, and J.M. Adams. 2014. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature Reviews. Molecular Cell Biology 15(1): 49–63. doi: 10.1038/nrm3722.CrossRefPubMedGoogle Scholar
  7. 7.
    Dvorakova, K., C.M. Payne, L. Ramsey, H. Holubec, R. Sampliner, J. Dominguez, B. Dvorak, et al. 2004. Increased expression and secretion of interleukin-6 in patients with Barrett’s esophagus. Clinical Cancer Research 10(6): 2020–2028.CrossRefPubMedGoogle Scholar
  8. 8.
    Estores, D., and V. Velanovich. 2013. Barrett esophagus: epidemiology, pathogenesis, diagnosis, and management. Current Problems in Surgery 50(5): 192–226. doi: 10.1067/j.cpsurg.2013.01.004.CrossRefPubMedGoogle Scholar
  9. 9.
    Fasshauer, M., and R. Paschke. 2003. Regulation of adipocytokines and insulin resistance. Diabetologia 46(12): 1594–1603. doi: 10.1007/s00125-003-1228-z.CrossRefPubMedGoogle Scholar
  10. 10.
    Filomeni, G., K. Aquilano, G. Rotilio, and M.R. Ciriolo. 2003. Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Research 63(18): 5940–5949.PubMedGoogle Scholar
  11. 11.
    Gibson, M.K., A.S. Dhaliwal, N.J. Clemons, W.A. Phillips, K. Dvorak, D. Tong, S. Law, et al. 2013. Barrett’s esophagus: cancer and molecular biology. Annals of the New York Academy of Sciences 1300: 296–314. doi: 10.1111/nyas.12252.CrossRefPubMedGoogle Scholar
  12. 12.
    Halaas, J.L., K.S. Gajiwala, M. Maffei, S.L. Cohen, B.T. Chait, D. Rabinowitz, R.L. Lallone, S.K. Burley, and J.M. Friedman. 1995. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223): 543–546.CrossRefPubMedGoogle Scholar
  13. 13.
    Hsu, T.C., M.R. Young, J. Cmarik, and N.H. Colburn. 2000. Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radical Biology and Medicine 28(9): 1338–1348.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang, Y.T., C.H. Yao, C.L. Way, K.W. Lee, C.Y. Tsai, H.C. Ou, and W.W. Kuo. 2013. Diallyl trisulfide and diallyl disulfide ameliorate cardiac dysfunction by suppressing apoptotic and enhancing survival pathways in experimental diabetic rats. Journal of Applied Physiology 114(3): 402–410. doi: 10.1152/japplphysiol.00672.2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Huo, X., S. Juergens, X. Zhang, D. Rezaei, C. Yu, E.D. Strauch, J.Y. Wang, et al. 2011. Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-kappaB activation in benign Barrett’s epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 301(2): G278–286. doi: 10.1152/ajpgi.00092.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jaiswal, K.R., C.P. Morales, L.A. Feagins, K.G. Gandia, X. Zhang, H.Y. Zhang, K. Hormi-Carver, et al. 2007. Characterization of telomerase-immortalized, non-neoplastic, human Barrett’s cell line (BAR-T). Diseases of the Esophagus 20(3): 256–264. doi: 10.1111/j.1442-2050.2007.00683.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Jankowski, J.A., and P.A. Hooper. 2011. Chemoprevention in Barrett’s esophagus: a pill a day? Gastrointestinal Endoscopy Clinics of North America 21(1): 155–170. doi: 10.1016/j.giec.2010.09.005.CrossRefPubMedGoogle Scholar
  18. 18.
    Jenkins, G.J., J. Cronin, A. Alhamdani, N. Rawat, F. D’Souza, T. Thomas, Z. Eltahir, A.P. Griffiths, and J.N. Baxter. 2008. The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappaB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis 23(5): 399–405. doi: 10.1093/mutage/gen029.CrossRefPubMedGoogle Scholar
  19. 19.
    Kalayarasan, S., P.N. Prabhu, N. Sriram, R. Manikandan, M. Arumugam, and G. Sudhandiran. 2009. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. European Journal of Pharmacology 606(1–3): 162–171. doi: 10.1016/j.ejphar.2008.12.055.CrossRefPubMedGoogle Scholar
  20. 20.
    Karmakar, S., N.L. Banik, S.J. Patel, and S.K. Ray. 2007. Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis 12(4): 671–684. doi: 10.1007/s10495-006-0024-x.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim, J.G., S.H. Koh, Y.J. Lee, K.Y. Lee, Y. Kim, S. Kim, M.K. Lee, and S.H. Kim. 2005. Differential effects of diallyl disulfide on neuronal cells depend on its concentration. Toxicology 211(1–2): 86–96. doi: 10.1016/j.tox.2005.02.011.CrossRefPubMedGoogle Scholar
  22. 22.
    Koh, S.H., H. Kwon, K.H. Park, J.K. Ko, J.H. Kim, M.S. Hwang, Y.N. Yum, et al. 2005. Protective effect of diallyl disulfide on oxidative stress-injured neuronally differentiated PC12 cells. Brain Research. Molecular Brain Research 133(2): 176–186. doi: 10.1016/j.molbrainres.2004.10.006.CrossRefPubMedGoogle Scholar
  23. 23.
    Labi, V., M. Erlacher, G. Krumschnabel, C. Manzl, A. Tzankov, J. Pinon, A. Egle, and A. Villunger. 2010. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes and Development 24(15): 1602–1607. doi: 10.1101/gad.1940210.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lee, I.C., S.H. Kim, H.S. Baek, C. Moon, S.S. Kang, Y.B. Kim, I.S. Shin, and J.C. Kim. 2014. The involvement of Nrf2 in the protective effects of diallyl disulfide on carbon tetrachloride-induced hepatic oxidative damage and inflammatory response in rats. Food and Chemical Toxicology 63: 174–185. doi: 10.1016/j.fct.2013.11.006.CrossRefPubMedGoogle Scholar
  25. 25.
    Lepage, C., A. Drouillard, J.L. Jouve, and J. Faivre. 2013. Epidemiology and risk factors for oesophageal adenocarcinoma. Digestive and Liver Disease 45(8): 625–629. doi: 10.1016/j.dld.2012.12.020.CrossRefPubMedGoogle Scholar
  26. 26.
    Maldonado, P.D., M.E. Chanez-Cardenas, and J. Pedraza-Chaverri. 2005. Aged garlic extract, garlic powder extract, S-allylcysteine, diallyl sulfide and diallyl disulfide do not interfere with the antibiotic activity of gentamicin. Phytotherapy Research 19(3): 252–254. doi: 10.1002/ptr.1674.CrossRefPubMedGoogle Scholar
  27. 27.
    Mantovani, A. 2010. Molecular pathways linking inflammation and cancer. Current Molecular Medicine 10(4): 369–373.CrossRefPubMedGoogle Scholar
  28. 28.
    Miroddi, M., F. Calapai, and G. Calapai. 2011. Potential beneficial effects of garlic in oncohematology. Mini Reviews in Medicinal Chemistry 11(6): 461–472.CrossRefPubMedGoogle Scholar
  29. 29.
    Nasri, H., M. Nematbakhsh, and M. Rafieian-Kopaei. 2013. Ethanolic extract of garlic for attenuation of gentamicin-induced nephrotoxicity in Wistar rats. Iranian Journal of Kidney Diseases 7(5): 376–382.PubMedGoogle Scholar
  30. 30.
    Nehra, D., P. Howell, C.P. Williams, J.K. Pye, and J. Beynon. 1999. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 44(5): 598–602.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nencini, C., G.G. Franchi, F. Cavallo, and L. Micheli. 2010. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver. Journal of Medicinal Food 13(2): 329–335. doi: 10.1089/jmf.2008.0180.CrossRefPubMedGoogle Scholar
  32. 32.
    Pedraza-Chaverri, J., A.E. Gonzalez-Orozco, P.D. Maldonado, D. Barrera, O.N. Medina-Campos, and R. Hernandez-Pando. 2003. Diallyl disulfide ameliorates gentamicin-induced oxidative stress and nephropathy in rats. European Journal of Pharmacology 473(1): 71–78.CrossRefPubMedGoogle Scholar
  33. 33.
    Pennathur, A., M.K. Gibson, B.A. Jobe, and J.D. Luketich. 2013. Oesophageal carcinoma. Lancet 381(9864): 400–412. doi: 10.1016/s0140-6736(12)60643-6.CrossRefPubMedGoogle Scholar
  34. 34.
    Poon, I.K., C.D. Lucas, A.G. Rossi, and K.S. Ravichandran. 2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology 14(3): 166–180. doi: 10.1038/nri3607.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pophali, P., and M. Halland. 2016. Barrett’s oesophagus: diagnosis and management. BMJ 353: i2373.CrossRefPubMedGoogle Scholar
  36. 36.
    Pratheeshkumar, P., P. Thejass, and G. Kutan. 2010. Diallyl disulfide induces caspase-dependent apoptosis via mitochondria-mediated intrinsic pathway in B16F-10 melanoma cells by up-regulating p53, caspase-3 and down-regulating pro-inflammatory cytokines and nuclear factor-kappabeta-mediated Bcl-2 activation. Journal of Environmental Pathology, Toxicology and Oncology 29(2): 113–125.CrossRefPubMedGoogle Scholar
  37. 37.
    Ryan, E.A., M.E. Pick, and C. Marceau. 2001. Use of alternative medicines in diabetes mellitus. Diabetic Medicine 18(3): 242–245.CrossRefPubMedGoogle Scholar
  38. 38.
    Sapkota, M., T.K. Hottor, J.M. DeVasure, T.A. Wyatt, and M.L. McCaskill. 2014. Protective role of CYP2E1 inhibitor diallyl disulfide (DADS) on alcohol-induced malondialdehyde-deoxyguanosine (M1dG) adduct formation. Alcoholism, Clinical and Experimental Research 38(6): 1550–1558. doi: 10.1111/acer.12439.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shaheen, N., and D.F. Ransohoff. 2002. Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: clinical applications. JAMA 287(15): 1982–1986.CrossRefPubMedGoogle Scholar
  40. 40.
    Shin, I.S., J. Hong, C.M. Jeon, N.R. Shin, O.K. Kwon, H.S. Kim, J.C. Kim, S.R. Oh, and K.S. Ahn. 2013. Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappaB suppression. Food and Chemical Toxicology 62: 506–513. doi: 10.1016/j.fct.2013.09.012.CrossRefPubMedGoogle Scholar
  41. 41.
    Song, J.D., S.K. Lee, K.M. Kim, S.E. Park, S.J. Park, K.H. Kim, S.C. Ahn, and Y.C. Park. 2009. Molecular mechanism of diallyl disulfide in cell cycle arrest and apoptosis in HCT-116 colon cancer cells. Journal of Biochemical and Molecular Toxicology 23(1): 71–79. doi: 10.1002/jbt.20266.CrossRefPubMedGoogle Scholar
  42. 42.
    Tang, H., Y. Kong, J. Guo, Y. Tang, X. Xie, L. Yang, and Q. Su. 2013. Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22. Cancer Letters 340(1): 72–81. doi: 10.1016/j.canlet.2013.06.027.CrossRefPubMedGoogle Scholar
  43. 43.
    Tselepis, C., I. Perry, C. Dawson, R. Hardy, S.J. Darnton, C. McConkey, R.C. Stuart, N. Wright, R. Harrison, and J.A. Jankowski. 2002. Tumour necrosis factor-alpha in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene 21(39): 6071–6081. doi: 10.1038/sj.onc.1205731.CrossRefPubMedGoogle Scholar
  44. 44.
    Tsubura, A., Y.C. Lai, M. Kuwata, N. Uehara, and K. Yoshizawa. 2011. Anticancer effects of garlic and garlic-derived compounds for breast cancer control. Anti-Cancer Agents in Medicinal Chemistry 11(3): 249–253.CrossRefPubMedGoogle Scholar
  45. 45.
    Vaezi, M.F., and J.E. Richter. 1996. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111(5): 1192–1199.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang, K.K., and R.E. Sampliner. 2008. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. American Journal of Gastroenterology 103(3): 788–797. doi: 10.1111/j.1572-0241.2008.01835.x.CrossRefPubMedGoogle Scholar
  47. 47.
    Winberg, H., M. Lindblad, J. Lagergren, and H. Dahlstrand. 2012. Risk factors and chemoprevention in Barrett’s esophagus—an update. Scandinavian Journal of Gastroenterology 47(4): 397–406. doi: 10.3109/00365521.2012.667145.CrossRefPubMedGoogle Scholar
  48. 48.
    Wu, X.J., Y. Hu, E. Lamy, and V. Mersch-Sundermann. 2009. Apoptosis induction in human lung adenocarcinoma cells by oil-soluble allyl sulfides: triggers, pathways, and modulators. Environmental and Molecular Mutagenesis 50(3): 266–275. doi: 10.1002/em.20467.CrossRefPubMedGoogle Scholar
  49. 49.
    Yi, L., and Q. Su. 2013. Molecular mechanisms for the anti-cancer effects of diallyl disulfide. Food and Chemical Toxicology 57: 362–370. doi: 10.1016/j.fct.2013.04.001.CrossRefPubMedGoogle Scholar
  50. 50.
    Yin, X., R. Zhang, C. Feng, J. Zhang, D. Liu, K. Xu, X. Wang, et al. 2014. Diallyl disulfide induces G2/M arrest and promotes apoptosis through the p53/p21 and MEK-ERK pathways in human esophageal squamous cell carcinoma. Oncology Reports 32(4): 1748–1756. doi: 10.3892/or.2014.3361.PubMedGoogle Scholar
  51. 51.
    Yun, H.M., J.O. Ban, K.R. Park, C.K. Lee, H.S. Jeong, S.B. Han, and J.T. Hong. 2014. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacology and Therapeutics 142(2): 183–195. doi: 10.1016/j.pharmthera.2013.12.005.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J.M. Friedman. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505): 425–432. doi: 10.1038/372425a0.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Cheng Feng
    • 1
  • Yumei Luo
    • 1
  • Yuanyuan Nian
    • 1
  • Dong Liu
    • 1
  • Xiaoran Yin
    • 1
  • Jing Wu
    • 1
  • Jia Di
    • 1
  • Rong Zhang
    • 2
  • Jun Zhang
    • 1
  1. 1.Division of GastroenterologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  2. 2.Division of GastroenterologyShaanxi Provincial People’s HospitalXi’anChina

Personalised recommendations