, Volume 40, Issue 2, pp 454–463 | Cite as

Tripartite Motif 8 (TRIM8) Positively Regulates Pro-inflammatory Responses in Pseudomonas aeruginosa-Induced Keratitis Through Promoting K63-Linked Polyubiquitination of TAK1 Protein

  • Litao Guo
  • Weili Dong
  • Xiaoxiao Fu
  • Jing Lin
  • Zhijun Dong
  • Xiaobo TanEmail author
  • Tiemin ZhangEmail author


Pseudomonas aeruginosa (PA)-induced keratitis is a rapidly progressive ocular infectious disease that often leads to inflammatory epithelial edema, stromal infiltration, tissue destruction, corneal ulceration, and vision loss. In this study, we investigate the role of tripartite motif 8 (TRIM8) in regulating the inflammatory process of PA-induced keratitis. The expression of TRIM8 was increased in mouse corneas and in vitro-cultured macrophages after PA infection. Knockdown of the expression of TRIM8 significantly inhibited the activation of NF-κB signaling and decreased the production of pro-inflammatory cytokines both in vivo and in vitro after infected with PA. Furthermore, we investigated the potential mechanism and we found after PA infection that TRIM8 could promote K63-linked polyubiquitination of transforming growth factor β-activated kinase 1 (TAK1), leading to the activation of TAK1 and enhanced inflammatory responses. Taken together, we demonstrated that TRIM8 has pro-inflammatory effect on PA-induced keratitis and suggest TRIM8 as a potential therapeutic target for keratitis.


TRIM8 keratitis TAK1 polyubiquitination 



This study was supported by grants from the Natural Science Foundation of Hebei Province (no. H2015406054).


  1. 1.
    Liesegang, T.J. 1997. Contact lens-related microbial keratitis: part I: epidemiology. Cornea 16: 125–131.PubMedGoogle Scholar
  2. 2.
    Hazlett, L.D. 2004. Corneal response to Pseudomonas aeruginosa infection. Progress in Retinal and Eye Research 23: 1–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Yildiz, E.H., S. Airiani, K.M. Hammersmith, C.J. Rapuano, P.R. Laibson, A.S. Virdi, et al. 2012. Trends in contact lens-related corneal ulcers at a tertiary referral center. Cornea 31: 1097–1102.CrossRefPubMedGoogle Scholar
  4. 4.
    Engel, L.S., J.M. Hill, J.M. Moreau, L.C. Green, J.A. Hobden, and R.J. O’Callaghan. 1998. Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Investigative Ophthalmology & Visual Science 39: 662–665.Google Scholar
  5. 5.
    Kernacki, K.A., J.A. Hobden, L.D. Hazlett, R. Fridman, and R.S. Berk. 1995. In vivo bacterial protease production during Pseudomonas aeruginosa corneal infection. Investigative Ophthalmology & Visual Science 36: 1371–1378.Google Scholar
  6. 6.
    Steuhl, K.P., G. Doring, A. Henni, H.J. Thiel, and K. Botzenhart. 1987. Relevance of host-derived and bacterial factors in Pseudomonas aeruginosa corneal infections. Investigative Ophthalmology & Visual Science 28: 1559–1568.Google Scholar
  7. 7.
    Steuhl, K.P., G. Doring, and H.J. Thiel. 1989. The significance of bacterial and host factors in corneal infections caused by Pseudomonas aeruginosa. Fortschritte der Ophthalmologie: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 86: 283–286.Google Scholar
  8. 8.
    Kernacki, K.A., R.P. Barrett, J.A. Hobden, and L.D. Hazlett. 2000. Macrophage inflammatory protein-2 is a mediator of polymorphonuclear neutrophil influx in ocular bacterial infection. Journal of Immunology (Baltimore, Md.: 1950) 164: 1037–1045.CrossRefGoogle Scholar
  9. 9.
    Rudner, X.L., K.A. Kernacki, R.P. Barrett, and L.D. Hazlett. 2000. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophage-inflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. Journal of Immunology (Baltimore, Md.: 1950) 164: 6576–6582.CrossRefGoogle Scholar
  10. 10.
    Thakur, A., M. Xue, F. Stapleton, A.R. Lloyd, D. Wakefield, and M.D. Willcox. 2002. Balance of pro- and anti-inflammatory cytokines correlates with outcome of acute experimental Pseudomonas aeruginosa keratitis. Infection and Immunity 70: 2187–2197.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xue, M.L., A. Thakur, M.D. Willcox, H. Zhu, A.R. Lloyd, and D. Wakefield. 2003. Role and regulation of CXC-chemokines in acute experimental keratitis. Experimental Eye Research 76: 221–231.CrossRefPubMedGoogle Scholar
  12. 12.
    Licht, R.W. 2012. Lithium: still a major option in the management of bipolar disorder. CNS Neuroscience & Therapeutics 18: 219–226.CrossRefGoogle Scholar
  13. 13.
    Machado-Vieira, R., H.K. Manji, and C.A. Zarate Jr. 2009. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disorders 11(Suppl 2): 92–109.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Napolitano, L.M., and G. Meroni. 2012. TRIM family: pleiotropy and diversification through homomultimer and heteromultimer formation. IUBMB Life 64: 64–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Lascano, J., P.D. Uchil, W. Mothes, and J. Luban. 2016. TRIM5 retroviral restriction activity correlates with the ability to induce innate immune signaling. Journal of Virology 90: 308–316.CrossRefGoogle Scholar
  16. 16.
    Wang, Y., D. He, L. Yang, B. Wen, J. Dai, Q. Zhang, et al. 2015. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis. Biochemical and Biophysical Research Communications 463: 458–465.CrossRefPubMedGoogle Scholar
  17. 17.
    Shibata, M., T. Sato, R. Nukiwa, T. Ariga, and S. Hatakeyama. 2012. TRIM45 negatively regulates NF-kappaB-mediated transcription and suppresses cell proliferation. Biochemical and Biophysical Research Communications 423: 104–109.CrossRefPubMedGoogle Scholar
  18. 18.
    Mcnab, F.W., R. Rajsbaum, J.P. Stoye, and A. O’Garra. 2011. Tripartite-motif proteins and innate immune regulation. Current Opinion in Immunology 23: 46–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Vincent, S.R., D.A. Kwasnicka, and P. Fretier. 2000. A novel RING finger-B box-coiled-coil protein, GERP. Biochemical and Biophysical Research Communications 279: 482–486.CrossRefPubMedGoogle Scholar
  20. 20.
    Toniato, E., X.P. Chen, J. Losman, V. Flati, L. Donahue, and P. Rothman. 2002. TRIM8/GERP RING finger protein interacts with SOCS-1. The Journal of Biological Chemistry 277: 37315–37322.CrossRefPubMedGoogle Scholar
  21. 21.
    Caratozzolo, M.F., L. Micale, M.G. Turturo, S. Cornacchia, C. Fusco, F. Marzano, et al. 2012. TRIM8 modulates p53 activity to dictate cell cycle arrest. Cell Cycle (Georgetown, Tex.) 11: 511–523.CrossRefGoogle Scholar
  22. 22.
    Li, Q., J. Yan, A.P. Mao, C. Li, Y. Ran, H.B. Shu, and Y.Y. Wang. 2011. Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America 108: 19341–19346.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tomar, D., L. Sripada, P. Prajapati, R. Singh, A.K. Singh, and R. Singh. 2012. Nucleo-cytoplasmic trafficking of TRIM8, a novel oncogene, is involved in positive regulation of TNF induced NF-kappaB pathway. PloS One 7: e48662.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sun, M., M. Zhu, K. Chen, X. Nie, Q. Deng, L.D. Hazlett, et al. 2013. TREM-2 promotes host resistance against Pseudomonas aeruginosa infection by suppressing corneal inflammation via a PI3K/Akt signaling pathway. Investigative Ophthalmology & Visual Science 54: 3451–3462.CrossRefGoogle Scholar
  25. 25.
    Hazlett, L.D., S. Mcclellan, B. Kwon, and R. Barrett. 2000. Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Investigative Ophthalmology & Visual Science 41: 805–810.Google Scholar
  26. 26.
    Feterl, M., B.L. Govan, and N. Ketheesan. 2008. The effect of different Burkholderia pseudomallei isolates of varying levels of virulence on toll-like-receptor expression. Transactions of the Royal Society of Tropical Medicine and Hygiene 102(Suppl 1): S82–88.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen, K., L. Yin, X. Nie, Q. Deng, Y. Wu, M. Zhu, et al. 2013. β-Catenin promotes host resistance against Pseudomonas aeruginosa keratitis. The Journal of Infection 67: 584–594.CrossRefPubMedGoogle Scholar
  28. 28.
    Karin, M., and A. Lin. 2002. NF-kappaB at the crossroads of life and death. Nature Immunology 3: 221–227.CrossRefPubMedGoogle Scholar
  29. 29.
    Sun, Y., M. Karmakar, S. Roy, R.T. Ramadan, S.R. Williams, S. Howell, et al. 2010. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. Journal of Immunology (Baltimore, Md.: 1950) 185: 4272–4283.CrossRefGoogle Scholar
  30. 30.
    Fan, Y., Y. Yu, Y. Shi, W. Sun, M. Xie, N. Ge, et al. 2010. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. The Journal of Biological Chemistry 285: 5347–5360.CrossRefPubMedGoogle Scholar
  31. 31.
    Stapleton, F., and N. Carnt. 2012. Contact lens-related microbial keratitis: how have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye 26: 185–193.CrossRefPubMedGoogle Scholar
  32. 32.
    Caratozzolo, M.F., A. Valletti, M. Gigante, I. Aiello, F. Mastropasqua, F. Marzano, et al. 2014. TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma. Oncotarget 5: 7446–7457.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Micale, L., C. Fusco, A. Fontana, R. Barbano, B. Augello, P. De Nittis, et al. 2015. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival. BMC Cancer 15: 470.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Malynn, B.A., and A. Ma. 2010. Ubiquitin makes its mark on immune regulation. Immunity 33: 843–852.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Adhikari, A., and Z.J. Chen. 2009. Diversity of polyubiquitin chains. Developmental Cell 16: 485–486.CrossRefPubMedGoogle Scholar
  36. 36.
    Sorrentino, A., N. Thakur, S. Grimsby, A. Marcusson, V. Von Bulow, N. Schuster, et al. 2008. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology 10: 1199–1207.CrossRefPubMedGoogle Scholar
  37. 37.
    Mao, R., Y. Fan, Y. Mou, H. Zhang, S. Fu, and J. Yang. 2011. TAK1 lysine 158 is required for TGF-beta-induced TRAF6-mediated Smad-independent IKK/NF-kappaB and JNK/AP-1 activation. Cellular Signalling 23: 222–227.CrossRefPubMedGoogle Scholar
  38. 38.
    Fan, Y., Y. Yu, R. Mao, H. Zhang, and J. Yang. 2011. TAK1 Lys-158 but not Lys-209 is required for IL-1beta-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-kappaB activation. Cellular Signalling 23: 660–665.CrossRefPubMedGoogle Scholar
  39. 39.
    Fan, Y.H., Y. Yu, R.F. Mao, X.J. Tan, G.F. Xu, H. Zhang, et al. 2011. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death and Differentiation 18: 1547–1560.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of OphthalmologyAffiliated Hospital of Chengde Medical UniversityChengdeChina
  2. 2.Department of Orthopedic TraumaAffiliated Hospital of Chengde Medical UniversityChengdeChina

Personalised recommendations