Skip to main content

Advertisement

Log in

Protective Effect of Crocodile Hemoglobin and Whole Blood Against Hydrogen Peroxide-Induced Oxidative Damage in Human Lung Fibroblasts (MRC-5) and Inflammation in Mice

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

A putative protective effect of cHb and cWb against H2O2-induced oxidative damage was evaluated in detail using MRC-5 cells. In addition, the carrageenan (Carr)-induced mouse paw edema model and the cotton pellet-induced granuloma model were employed to examine the in vivo anti-inflammatory activity of cHb and cWb in mice. It was demonstrated that both cHb and cWb treatments significantly increased cell viability and inhibited morphology alterations in MRC-5 cells exposed to H2O2. Orally administered cHb and cWb significantly reduced Carr-induced paw edema volume and cotton pellet-induced granuloma formation. Moreover, cHb and cWb decreased the expression levels of important pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α), while only cWb was found to increase the expression of the anti-inflammatory cytokine IL-10 significantly. Finally, the activity of antioxidant enzymes (SOD, CAT, and GPx) in the liver improved after cHb and cWb treatment under acute and chronic inflammation. Taken collectively, the results of this study suggest that both cHb and cWb protect against hydrogen peroxide-induced damage in fibroblast cells. Moreover, cHb and cWb were found to exhibit anti-inflammatory activity in both the acute and chronic stages of inflammation and appear to enhance antioxidant enzyme activity and decrease lipid peroxidation in the livers of mice. Therefore, this study indicates that cHb and cWb have great potential to be used in the development of dietary supplements for the prevention of oxidative stress related to inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cai, Y., Q. Luo, M. Sun, and H. Corke. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences 74: 2157–2184.

    Article  CAS  PubMed  Google Scholar 

  2. Deng, J.S., C.S. Chi, S.S. Huang, P.H. Shie, T.H. Lin, and G.J. Huang. 2011. Antioxidant, analgesic, and anti-inflammatory activities of the ethanolic extracts of Taxillus liquidambaricola. Journal of Ethnopharmacology 137: 1161–1171.

    Article  CAS  PubMed  Google Scholar 

  3. Yu, T., H.M. Ahn, T. Shen, K. Yoon, H.J. Jang, Y.J. Lee, et al. 2011. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. Journal of Ethnopharmacology 137: 1197–1206.

    Article  PubMed  Google Scholar 

  4. Salvemini, D., Z.Q. Wang, D.M. Bourdon, M.K. Stern, M.G. Currie, and P.T. Manning. 1966. Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. European Journal of Pharmacology 303: 217–220.

    Article  Google Scholar 

  5. Calloni, C., R.D. Agnol, L.S. Martinez, F.D.S. Marcon, S. Moura, and M. Salvador. 2015. Jaboticaba (Plinia trunciflora (O. Berg) Kausel) fruit reduces oxidative stress in human fibroblasts cells (MRC-5). Food Research International 70: 15–22.

    Article  CAS  Google Scholar 

  6. Naaz, F., S. Javed, and M.Z. Abdin. 2007. Hepatoprotective effect of ethanolic extract of Phyllanthus amarus Schum. et Thonn. on aflatoxinB1-induced liver damage in mice. Journal of Ethnopharmacology 113: 503–509.

    Article  PubMed  Google Scholar 

  7. Miguel, M.G. 2010. Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 15: 9252–9287.

    Article  PubMed  Google Scholar 

  8. Huang, S.S., C.S. Chiu, T.H. Lin, M.M. Lee, C.Y. Lee, S.J. Chang, et al. 2013. Antioxidant and anti-inflammatory activities of aqueous extract of Centipeda minima. Journal of Ethnopharmacology 147: 395–405.

    Article  CAS  PubMed  Google Scholar 

  9. Preecharram, S., S. Daduang, W. Bunyatratchata, T. Araki, and S. Thammasirirak. 2008. Antibacterial activity from Siamese crocodile (Crocodylus siamensis) serum. African Journal of Biotechnology 7: 3121–3128.

    CAS  Google Scholar 

  10. Preecharram, S., P. Jearranaiprepame, S. Daduang, Y. Temsiripong, T. Somdee, T. Fukamizo, et al. 2010. Isolation and characterisation of crocosin, an antibacterial compound from crocodile (Crocodylus siamensis) plasma. Animal Science Journal 81: 393–401.

    Article  CAS  PubMed  Google Scholar 

  11. Pata, S., N. Yaraksa, S. Daduang, Y. Temsiripong, J. Svasti, T. Araki, et al. 2011. Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Developmental & Comparative Immunology 35: 545–553.

    Article  CAS  Google Scholar 

  12. Srihongthong, S., A. Pakdeesuwan, S. Daduang, T. Araki, A. Dhiravisit, and S. Thammasirirak. 2012. Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis). The Protein Journal 31: 466–476.

    Article  CAS  PubMed  Google Scholar 

  13. Kommanee, J., S. Preecharram, S. Daduang, T. Yosapong, A. Dhiravisit, Y. Yuzo, et al. 2012. Antibacterial activity of plasma from crocodile (Crocodylus siamensis) against pathogenic bacteria. Annals Clinical Microbiology and Antimicrobial 11: 22.

    Article  Google Scholar 

  14. Yaraksa, N., T. Anunthawan, T. Theansungnoen, S. Daduang, T. Araki, A. Dhiravisit, et al. 2014. Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts. The Journal of Antibiotics 67: 205–212.

    Article  CAS  PubMed  Google Scholar 

  15. Jandaruang, J., J. Siritapetawee, K. Thumanu, C. Songsiriritthigul, C. Krittanai, S. Daduang, et al. 2012. The effects of temperature and pH on secondary structure and antioxidant activity of Crocodylus siamensis hemoglobin. The Protein Journal 31: 43–50.

    Article  CAS  PubMed  Google Scholar 

  16. Theansungnoen, T., N. Yaraksa, S. Daduang, A. Dhiravisit, and S. Thammasirirak. 2014. Purification and characterization of antioxidant peptides from leukocyte extract of Crocodylus siamensis. The Protein Journal 33: 24–31.

    Article  CAS  PubMed  Google Scholar 

  17. Phosri, S., P. Mahakunakorn, J. Lueangsakulthai, N. Jangpromma, P. Swatsitang, S. Daduang, et al. 2014. An investigation of antioxidant and anti-inflammatory activities from blood components of crocodile (Crocodilus siamensis). The Protein Journal 33: 484–492.

    Article  CAS  PubMed  Google Scholar 

  18. Vichai, V., and K. Kirtikara. 2006. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols 1: 1112–1116.

    Article  CAS  PubMed  Google Scholar 

  19. Winter, C.A., E.A. Risley, and G.W. Nuss. 1962. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine 111: 544–547.

    Article  CAS  PubMed  Google Scholar 

  20. Winter, C.A., and C.C. Porter. 1957. Effect of alteration in side chains upon anti-inflammatory and liver glycogen activities in hydrocortisone esters. Journal of the American Pharmacists Association 46: 515–519.

    Article  CAS  Google Scholar 

  21. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  22. Goth, L. 1991. A simple method for determination of serum catalase activity, and revision of reference range. Clinica Chimica Acta 196: 143–152.

    Article  CAS  Google Scholar 

  23. Sun, Y., L.W. Oberley, and Y. Li. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry 34: 497–500.

    CAS  PubMed  Google Scholar 

  24. Chatuphonprasert, W., L. Udomsuk, O. Monthakantirat, Y. Churikhit, W. Putalun, and K. Jarukamjorn. 2013. Effects of Pueraria mirifica and miroestrol on the antioxidation-related enzymes in ovariectomized mice. Journal of Pharmacy and Pharmacology 65: 447–456.

    Article  CAS  PubMed  Google Scholar 

  25. Pinto, R.E., and W. Bartley. 1969. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochemical Journal 112: 109–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.

    Article  CAS  PubMed  Google Scholar 

  27. Kong, B., X. Peng, Y.L. Xiong, and X. Zhao. 2012. Protection of lung fibroblast MRC-5 cells against hydrogen peroxide-induced oxidative damage by 0.1–2.8 kDa antioxidative peptides isolated from whey protein hydrolysate. Food Chemistry 135: 540–547.

    Article  CAS  PubMed  Google Scholar 

  28. Jia, N., T. Li, X. Diao, and B. Kong. 2014. Protective effects of black currant (Ribesnigrum L.) extract on hydrogen peroxide-induced damage in lung fibroblast MRC-5 cells in relation to the antioxidant activity. Journal of Functional Foods 11: 142–151.

    Article  CAS  Google Scholar 

  29. Winterbourn, C.C., and A. Stern. 1987. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. The Journal of Clinical Investigation 80: 1486–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Babu, N.P., P. Pandikumar, and S. Ignacimuthu. 2009. Anti-inflammatory activity of Albizia lebbeck Benth., an ethnomedicinal plant, in acute and chronic animal models of inflammation. Journal of Ethnopharmacology 125: 356–360.

    Article  PubMed  Google Scholar 

  31. Boonyarikpunchai, W., S. Sukrong, and P. Towiwat. 2014. Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl. Pharmacology, Biochemistry and Behavior 124: 67–73.

    Article  CAS  PubMed  Google Scholar 

  32. Lefkowitz, D.L., M.P. Gelderman, S.R. Fuhrmann, S. Graham, J.D. Starnes, S.S. Lefkowitz, et al. 1999. Neutrophilic lysozyme-macrophage interactions perpetuate chronic inflammation associated with experimental arthritis. Clinical Immunology 91: 145–155.

    Article  CAS  PubMed  Google Scholar 

  33. Badole, S.L., A.A. Zanwar, A.E. Ghule, P. Ghosh, and S.L. Bodhankar. 2012. Analgesic and anti-inflammatory activity of alcoholic extract of stem bark of Pongamia pinnata (L.) Pierre. Biomedicine & Aging Pathology 2: 19–23.

    Article  Google Scholar 

  34. Da Rosa, J.S., B.M. Facchin, J. Bastos, M.A. Siqueira, G.A. Micke, E.M. Dalmarco, et al. 2013. Systemic administration of Rosmarinus officinalis attenuates the inflammatory response induced by carrageenan in the mouse model of pleurisy. Planta Medica 79: 1605–1614.

    Article  PubMed  Google Scholar 

  35. Collins, P., J. Burman, H.I. Chung, and K. Fox. 1993. Hemoglobin inhibits endothelium-dependent relaxation to acetylcholine in human coronary arteries in vivo. Circulation 87: 80–85.

    Article  CAS  PubMed  Google Scholar 

  36. Dreier, J.P., K. Korner, N. Ebert, A. Gorner, I. Rubin, T. Back, et al. 1998. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induce cortical spreading ischemia when K+ is increased in the subarachnoid space. Journal of Cerebral Blood Flow & Metabolism 18: 978–990.

    Article  CAS  Google Scholar 

  37. Gibson, Q.H., and F.J.W. Roughton. 1957. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. The Journal of Physiology 136: 507–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niess, A., F. Passek, I. Lorenz, E. Schneider, H. Dickhuth, H. Northoff, et al. 1999. Expression of the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes. Free Radical Biology and Medicine 26: 184–192.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, T.S., and L.Y. Chau. 2002. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nature Medicine 8: 240–246.

    Article  CAS  PubMed  Google Scholar 

  40. Sathyapriya, K., and C.S. Parameswari. 2011. Effect of dialysis on heme oxygenase-1 (HO-1) expression in peripheral blood leukocytes of end staged renal diseased patients. Asian Journal of Biochemistry 6: 416–425.

    Google Scholar 

  41. Ryter, S.W., J. Alam, and A.M. Choi. 2006. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews 86: 583–650.

    Article  CAS  PubMed  Google Scholar 

  42. Habtezion, A., R. Kwan, A.L. Yang, M.E. Morgan, E. Akhtar, S.P. Wanaski, et al. 2011. Heme oxygenase-1 is induced in peripheral blood mononuclear cells of patients with acute pancreatitis: a potential therapeutic target. American Journal of Physiology-Gastrointestinal and Liver Physiology 300: 12–20.

    Article  Google Scholar 

  43. Darville, L.N.F., M.E. Merchant, A. Hasan, and K.K. Murray. 2010. Proteome analysis of the leukocytes from the American alligator (Alligator mississippiensis) using mass spectrometry. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 5: 308–316.

    Google Scholar 

  44. Esmon, C.T. 2012. Protein C anticoagulant system—anti-inflammatory effects. Seminars in Immunopathology 34: 127–132.

    Article  CAS  PubMed  Google Scholar 

  45. Zang, Y.X., L. Wang, E.L. Xiao, S.J. Li, J.J. Chen, B. Gao, et al. 2013. Ginsenoside-Rd exhibits anti-inflammatory activities through elevation of antioxidant enzyme activities and inhibition of JNK and ERK activation in vivo. International Immunopharmacology 17: 1094–1100.

    Article  Google Scholar 

  46. Gao, Y., L. Fang, R. Cai, C. Zong, X. Chen, J. Lu, et al. 2013. Shuang-Huang-Lian exerts anti-inflammatory and anti-oxidative activities in lipopolysaccharide-stimulated murine alveolar macrophages. Phytomedicine 21: 461–469.

    Article  PubMed  Google Scholar 

  47. Kirimi, E., O. Tuncer, M. Kosem, E. Ceylan, A. Tas, I. Tasal, et al. 2003. The effects of prednisolone and serum malondialdehyde levels in puppies with experimentally induced meconium aspiration syndrome. Journal of International Medical Research 31: 113–122.

    Article  CAS  PubMed  Google Scholar 

  48. Pingsusaen, P., P. Kunanusorn, P. Khonsung, N. Chiranthanut, A. Panthong, and C. Rujjanawate. 2015. Investigation of anti-inflammatory, antinociceptive and antipyretic activities of Stahlianthus involucratus rhizome ethanol extract. Journal of Ethnopharmacology 162: 199–206.

    Article  CAS  PubMed  Google Scholar 

  49. Frei, B., R. Stocker, and B.N. Ames. 1988. Antioxidant defenses and lipid peroxidation in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America 85: 9748–9752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu, M., S.M. Li, X.Y. Li, B.J. Zhang, and J.J. Wang. 2008. Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicology and Environmental Safety 71: 903–908.

    Article  CAS  PubMed  Google Scholar 

  51. Jung, H.J., J.H. Nam, J. Choi, K.T. Lee, and H.J. Park. 2005. Anti-inflammatory effects of chiisanoside and chiisanogenin obtained from the leaves of Acanthopanax chiisanensis in the carrageenan and Freund’s complete adjuvant-induced rats. Journal of Ethnopharmacology 97: 359–367.

    Article  CAS  PubMed  Google Scholar 

  52. Uzkeser, H., E. Cadirci, Z. Halici, F. Odabasoglu, B. Polat, T.N. Yuksel, et al. 2012. Anti-inflammatory and antinociceptive effects of salbutamolon acute and chronic models of inflammation in rats:involvement of an antioxidant mechanism. Mediators of Inflammation 2012: 438912.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vitturi, D.A., C.W. Sun, V.M. Harper, B. Thrash-Williams, N. Cantu-Medellin, B.K. Chacko, et al. 2013. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radical Biology and Medicine 55: 119–129.

    Article  CAS  PubMed  Google Scholar 

  54. Prakash, M., M.S. Shetty, P. Tilak, and N. Anwar. 2009. Total thiols: biomedical importance and their alteration in various disorders. Online Journal of Health and Allied Science 8: 2.

    Google Scholar 

  55. Chakrabarty, J., M.S. Vidyasagar, D. Fernandes, V. Bhat, J.G. Nagalakshmi, and S.S. Mayya. 2013. Effectiveness of pranayama on the levels of serum protein thiols and glutathione in breast cancer patients undergoing radiation therapy: a randomized controlled trial. Indian Journal of Physiology and Pharmacology 57: 225–232.

    Google Scholar 

  56. Reischl, E., A.L. Dafre, J.L. Franco, and F.D. Wilhelm. 2007. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 146: 22–53.

    Google Scholar 

  57. Demirkol, O., C. Adams, and N. Ercal. 2004. Biologically important thiols in various vegetables and fruits. Journal of Agricultural and Food Chemistry 52: 8151–8154.

    Article  CAS  PubMed  Google Scholar 

  58. Udenigwe, C.C., and R.E. Aluko. 2011. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences 12: 3148–3161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taverna, M., A.L. Marie, J.P. Mira, and B. Guidet. 2013. Specific antioxidant properties of human serum albumin. Annals of Intensive Care 3: 4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Khon Kaen University, Thailand, the Science Achievement Scholarships of Thailand (SAST), and the Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University. The Department of Pharmacology, Faculty of Medicine, Khon Kaen University provided laboratory facilities to perform the Carr-induced mouse paw edema assay. The authors would like to thank Sriracha Moda Co., Ltd., Chon Buri, Thailand for providing the necessary facilities to collect crocodile blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sompong Klaynongsruang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Santi Phosri and Nisachon Jangpromma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phosri, S., Jangpromma, N., Patramanon, R. et al. Protective Effect of Crocodile Hemoglobin and Whole Blood Against Hydrogen Peroxide-Induced Oxidative Damage in Human Lung Fibroblasts (MRC-5) and Inflammation in Mice. Inflammation 40, 205–220 (2017). https://doi.org/10.1007/s10753-016-0471-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0471-7

KEY WORDS

Navigation