, Volume 40, Issue 1, pp 328–339 | Cite as

Foxp3, Regulatory T Cell, and Autoimmune Diseases

  • Jin-Hui Tao
  • Miao Cheng
  • Jiang-Ping Tang
  • Qin Liu
  • Fan Pan
  • Xiang-Pei Li


Regulatory T cells (Tregs) represent a cell type that promotes immune tolerance to autologous components and maintains immune system homeostasis. The abnormal function of Tregs is relevant to the pathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and other autoimmune diseases. Therefore, therapeutic modulation of Tregs could be a potent means of treating autoimmune diseases. Human Tregs are diverse, however, and not all of them have immunosuppressive effects. Forkhead box P3 (Foxp3), a pivotal transcription factor of Tregs that is crucial in maintaining Treg immunosuppressive function, can be expressed heterogeneously or unstably across Treg subpopulations. Insights into modulating Treg differentiation on the level of DNA transcription or protein modification may improve the success of Treg modifying immunotherapies. In this review, we will summarize three main prospects: the regulatory mechanism of Foxp3, the influence on Foxp3 and Tregs in autoimmune diseases, then finally, how Tregs can be used to treat autoimmune diseases.


regulatory T cells forkhead box P3 autoimmune diseases 


Compliance with Ethical Standards

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Sakaguchi, S., N. Sakaguchi, M. Asano, et al. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology 155(3): 1151–1164.Google Scholar
  2. 2.
    Hsieh, C.S., H.M. Lee, and C.W. Lio. 2012. Selection of regulatory T cells in the thymus. Nature Reviews Immunology 12(3): 157–167.PubMedGoogle Scholar
  3. 3.
    Wing, K., and S. Sakaguchi. 2010. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature Immunology 11(1): 7–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Prakken, B., W. Ellen, and F. Van Wijk. 2013. Editorial: quality or quantity? Unraveling the role of Treg cells in rheumatoid arthritis. Arthritis and Rheumatism 65(3): 552–554.PubMedCrossRefGoogle Scholar
  5. 5.
    Scheinecker, C., M. Bonelli, and J.S. Smolen. 2010. Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells. Journal of Autoimmunity 35(3): 269–275.PubMedCrossRefGoogle Scholar
  6. 6.
    Free, M.E., D.O. Bunch, J.A. Mcgregor, et al. 2013. Patients with antineutrophil cytoplasmic antibody-associated vasculitis have defective Treg cell function exacerbated by the presence of a suppression-resistant effector cell population. Arthritis and Rheumatism 65(7): 1922–1933.PubMedCrossRefGoogle Scholar
  7. 7.
    Yamada, A., R. Arakaki, M. Saito, et al. 2016. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology 22(7): 2195–2205.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Heinrichs, J., J. Li, and H. Nguyen. 2016. CD8(+) Tregs promote GVHD prevention and overcome the impaired GVL effect mediated by CD4(+) Tregs in mice. Oncoimmunology 5(6), e1146842.PubMedCrossRefGoogle Scholar
  9. 9.
    Hillebrands, J.L., B. Whalen, J.T. Visser, et al. 2006. A regulatory CD4+ T cell subset in the BB rat model of autoimmune diabetes expresses neither CD25 nor Foxp3. Journal of Immunology 177(11): 7820–7832.CrossRefGoogle Scholar
  10. 10.
    Tsai, Y.G., C.Y. Lee, T.Y. Lin, et al. 2014. CD8+ Treg cells associated with decreasing disease activity after intravenous methylprednisolone pulse therapy in lupus nephritis with heavy proteinuria. PloS One 9(1), e81344.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kim, H.J., X. Wang, S. Radfar, et al. 2011. CD8+ T regulatory cells express the Ly49 Class I MHC receptor and are defective in autoimmune prone B6-Yaa mice. Proceedings of the National Academy of Sciences 108(5): 2010–2015.CrossRefGoogle Scholar
  12. 12.
    Heinrichs, J., J. Li, H. Nguyen, et al. 2016. CD8(+) Tregs promote GVHD prevention and overcome the impaired GVL effect mediated by CD4(+) Tregs in mice[J]. Oncoimmunology 5(6), e1146842.PubMedCrossRefGoogle Scholar
  13. 13.
    Tom, M.R., J. Li, A. Ueno, et al. 2016. Novel CD8+ T-cell subsets demonstrating plasticity in patients with inflammatory bowel disease[J]. Inflammatory Bowel Diseases 22(7): 1596–1608.PubMedCrossRefGoogle Scholar
  14. 14.
    Rifa’i, M., Y. Kawamoto, I. Nakashima, et al. 2004. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. The Journal of Experimental Medicine 200: 1123–1134.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Boor, P.P., H.J. Metselaar, S. Jonge, et al. 2011. Human plasmacytoid dendritic cells induce CD8(+) LAG-3(+) Foxp3(+) CTLA-4(+) regulatory T cells that suppress alloreactive memory T cells. European Journal of Immunology 41(6): 1663–1674.PubMedCrossRefGoogle Scholar
  16. 16.
    Ho, J., C.C. Kurtz, M. Naganuma, et al. 2008. A CD8+/CD103high T cell subset regulates TNF-mediated chronic murine ileitis. The Journal of Immunology 180(4): 2573–2580.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Uss, E., A.T. Rowshani, B. Hooibrink, et al. 2006. CD103 is a marker for alloantigen-induced regulatory CD8+ T cells. The Journal of Immunology 177(5): 2775–2783.PubMedCrossRefGoogle Scholar
  18. 18.
    Ben-David, H., A. Sharabi, M. Dayan, et al. 2007. The role of CD8+CD28 regulatory cells in suppressing myasthenia gravisassociated responses by a dual altered peptide ligand. Proceedings of the National Academy of Sciences 104(44): 17459–17464.CrossRefGoogle Scholar
  19. 19.
    Chen, Z., Y. Han, Y. Gu, et al. 2013. CD11c(high) CD8+ regulatory T cell feedback inhibits CD4 T cell immune response via Fas ligand-Fas pathway. The Journal of Immunology 190(12): 6145–6154.PubMedCrossRefGoogle Scholar
  20. 20.
    Churlaud, G., F. Pitoiset, F. Jebbawi, et al. 2015. Human and mouse CD8(+)CD25(+)FOXP3(+) regulatory T cells at steady state and during interleukin-2 therapy. Frontiers in Immunology 6: 171.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Monte, K., C. Wilson, and F.F. Shih. 2008. Increased number and function of FoxP3 regulatory T cells during experimental arthritis. Arthritis and Rheumatism 58(12): 3730–3741.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lyssuk, E.Y., A.V. Torgashina, S.K. Soloviev, et al. 2007. Reduced number and function of CD4+CD25highFoxP3+ regulatory T cells in patients with systemic lupus erythematosus. Advances in Experimental Medicine and Biology 113–119.Google Scholar
  23. 23.
    Bonelli, M., A. Savitskaya, K. Von Dalwigk, et al. 2008. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). International Immunology 20(7): 861–868.PubMedCrossRefGoogle Scholar
  24. 24.
    Lin, S.C., K.H. Chen, C.H. Lin, et al. 2007. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. European Journal of Clinical Investigation 37(12): 987–996.PubMedCrossRefGoogle Scholar
  25. 25.
    Venken, K., N. Hellings, T. Broekmans, et al. 2008. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. Journal of Immunology 180(9): 6411–6420.CrossRefGoogle Scholar
  26. 26.
    Liu, M.F., C.R. Wang, L.L. Fung, et al. 2004. Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scandinavian Journal of Immunology 59(2): 198–202.PubMedCrossRefGoogle Scholar
  27. 27.
    Ehrenstein, M.R., J.G. Evans, A. Singh, et al. 2004. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. The Journal of Experimental Medicine 200(3): 277–285.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rapetti, L., K.M. Chavele, C.M. Evans, et al. 2015. B cell resistance to Fas-mediated apoptosis contributes to their ineffective control by regulatory T cells in rheumatoid arthritis. Annals of the Rheumatic Diseases 74(1): 294–302.PubMedCrossRefGoogle Scholar
  29. 29.
    Kraczyk, B., R. Remus, and C. Hardt. 2014. CD49d Treg cells with high suppressive capacity are remarkably less efficient on activated CD45RA- than on naive CD45RA+ Teff cells. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 34(2): 346–355.CrossRefGoogle Scholar
  30. 30.
    Venigalla, R.K., T. Tretter, S. Krienke, et al. 2008. Reduced CD4+, CD25- T cell sensitivity to the suppressive function of CD4+, CD25high, CD127 -/low regulatory T cells in patients with active systemic lupus erythematosus. Arthritis and Rheumatism 58(7): 2120–2130.PubMedCrossRefGoogle Scholar
  31. 31.
    Dolff, S., M. Bijl, M.G. Huitema, et al. 2011. Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus. Clinical Immunology 141(2): 197–204.PubMedCrossRefGoogle Scholar
  32. 32.
    Humrich, J.Y., H. Morbach, R. Undeutsch, et al. 2010. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proceedings of the National Academy of Sciences of the United States of America 107(1): 204–209.PubMedCrossRefGoogle Scholar
  33. 33.
    Sarkar, S., and D.A. Fox. 2007. Regulatory T cell defects in rheumatoid arthritis. Arthritis and Rheumatism 56(3): 710–713.PubMedCrossRefGoogle Scholar
  34. 34.
    Mcgovern, J.L., D.X. Nguyen, C.A. Notley, et al. 2012. Th17 cells are restrained by Treg cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy. Arthritis and Rheumatism 64(10): 3129–3138.PubMedCrossRefGoogle Scholar
  35. 35.
    Kleczynska, W., B. Jakiela, H. Plutecka, et al. 2011. Imbalance between Th17 and regulatory T-cells in systemic lupus erythematosus. Folia Histochemica et Cytobiologica 49(4): 646–653.PubMedCrossRefGoogle Scholar
  36. 36.
    Ma, J., J. Yu, X. Tao, et al. 2010. The imbalance between regulatory and IL-17-secreting CD4+ T cells in lupus patients. Clinical Rheumatology 29(11): 1251–1258.PubMedCrossRefGoogle Scholar
  37. 37.
    Klein, S., C.C. Kretz, P.H. Krammer, et al. 2010. CD127(low/-) and FoxP3(+) expression levels characterize different regulatory T-cell populations in human peripheral blood. The Journal of Investigative Dermatology 130(2): 492–499.PubMedCrossRefGoogle Scholar
  38. 38.
    Sakaguchi, S., T. Yamaguchi, T. Nomura, et al. 2008. Regulatory T cells and immune tolerance. Cell 133(5): 775–787.PubMedCrossRefGoogle Scholar
  39. 39.
    Haribhai, D., W. Lin, B. Edwards, et al. 2009. A central role for induced regulatory T cells in tolerance induction in experimental colitis. Journal of Immunology 182(6): 3461–3468.CrossRefGoogle Scholar
  40. 40.
    Jordan, M.S., A. Boesteanu, A.J. Reed, et al. 2001. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunology 2(4): 301–306.PubMedCrossRefGoogle Scholar
  41. 41.
    Tai, X., M. Cowan, L. Feigenbaum, et al. 2005. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nature Immunology 6(2): 152–162.PubMedCrossRefGoogle Scholar
  42. 42.
    Salomon, B., D.J. Lenschow, L. Rhee, et al. 2000. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4): 431–440.PubMedCrossRefGoogle Scholar
  43. 43.
    Herman, A.E., G.J. Freeman, D. Mathis, et al. 2004. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. The Journal of Experimental Medicine 199(11): 1479–1489.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Taylor, P.A., R.J. Noelle, and B.R. Blazar. 2001. CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. The Journal of Experimental Medicine 193(11): 1311–1318.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tran, D.Q., H. Ramsey, and E.M. Shevach. 2007. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110(8): 2983–2990.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lal, G., N. Zhang, W. Van Der Touw, et al. 2009. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. Journal of Immunology 182(1): 259–273.CrossRefGoogle Scholar
  47. 47.
    Sakaguchi, S., M. Miyara, C.M. Costantino, et al. 2010. FOXP3+ regulatory T cells in the human immune system. Nature Reviews Immunology 10(7): 490–500.PubMedCrossRefGoogle Scholar
  48. 48.
    Gavin, M.A., T.R. Torgerson, E. Houston, et al. 2006. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proceedings of the National Academy of Sciences of the United States of America 103(17): 6659–6664.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Brunkow, M.E., E.W. Jeffery, K.A. Hjerrild, et al. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genetics 27(1): 68–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Harbuz, R., J. Lespinasse, S. Boulet, et al. 2010. Identification of new FOXP3 mutations and prenatal diagnosis of IPEX syndrome. Prenatal Diagnosis 30(11): 1072–1078.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang, J., X. Li, Z. Jia, et al. 2010. Reduced FOXP3 expression causes IPEX syndrome onset: an implication from an IPEX patient and his disease-free twin brother. Clinical Immunology 137(1): 178–180.PubMedCrossRefGoogle Scholar
  52. 52.
    D’hennezel, E., M. Ben-Shoshan, H.D. Ochs, et al. 2009. FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. The New England Journal of Medicine 361(17): 1710–1713.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhou, X., L.T. Jeker, B.T. Fife, et al. 2008. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. The Journal of Experimental Medicine 205(9): 1983–1991.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bailey-Bucktrout, S.L., M. Martinez-Llordella, X. Zhou, et al. 2013. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39(5): 949–962.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Komatsu, N., M.E. Mariotti-Ferrandiz, Y. Wang, et al. 2009. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proceedings of the National Academy of Sciences of the United States of America 106(6): 1903–1908.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yang, X.O., R. Nurieva, G.J. Martinez, et al. 2008. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29(1): 44–56.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    O’connor, R.A., M.D. Leech, J. Suffner, et al. 2010. Myelin-reactive, TGF-beta-induced regulatory T cells can be programmed to develop Th1-like effector function but remain less proinflammatory than myelin-reactive Th1 effectors and can suppress pathogenic T cell clonal expansion in vivo. Journal of Immunology 185(12): 7235–7243.CrossRefGoogle Scholar
  58. 58.
    Kryczek, I., K. Wu, E. Zhao, et al. 2011. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. Journal of Immunology 186(7): 4388–4395.CrossRefGoogle Scholar
  59. 59.
    Voo, K.S., Y.H. Wang, F.R. Santori, et al. 2009. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proceedings of the National Academy of Sciences of the United States of America 106(12): 4793–4798.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Miyao, T., S. Floess, R. Setoguchi, et al. 2012. Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36(2): 262–275.PubMedCrossRefGoogle Scholar
  61. 61.
    Kitagawa, Y., N. Ohkura, and S. Sakaguchi. 2015. Epigenetic control of thymic Treg-cell development. European Journal of Immunology 45(1): 11–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Ohkura, N., Y. Kitagawa, and S. Sakaguchi. 2013. Development and maintenance of regulatory T cells. Immunity 38(3): 414–423.Google Scholar
  63. 63.
    Greer, E.L., and Y. Shi. 2012. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews Genetics 13(5): 343–357.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Smith, Z.D., and A. Meissner. 2013. DNA methylation: roles in mammalian development. Nature Reviews Genetics 14(3): 204–220.PubMedCrossRefGoogle Scholar
  65. 65.
    Zheng, Y., S. Josefowicz, A. Chaudhry, et al. 2010. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463(7282): 808–812.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lal, G., and J.S. Bromberg. 2009. Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114(18): 3727–3735.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Floess, S., J. Freyer, C. Siewert, et al. 2007. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biology 5(2): e38.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Miyara, M., Y. Yoshioka, A. Kitoh, et al. 2009. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30(6): 899–911.PubMedCrossRefGoogle Scholar
  69. 69.
    Ohkura, N., M. Hamaguchi, H. Morikawa, et al. 2012. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37(5): 785–799.PubMedCrossRefGoogle Scholar
  70. 70.
    Tian, L., M.P. Fong, J.J. Wang, et al. 2005. Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development. Genetics 169(1): 337–345.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bartke, T., M. Vermeulen, B. Xhemalce, et al. 2010. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143(3): 470–484.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Levy, D., A.J. Kuo, Y. Chang, et al. 2011. Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nature Immunology 12(1): 29–36.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen, Z., J. Barbi, S. Bu, et al. 2013. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39(2): 272–285.PubMedCrossRefGoogle Scholar
  74. 74.
    Van Loosdregt, J., V. Fleskens, J. Fu, et al. 2013. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39(2): 259–271.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nie, H., Y. Zheng, R. Li, et al. 2013. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nature Medicine 19(3): 322–328.PubMedCrossRefGoogle Scholar
  76. 76.
    Li, Z., F. Lin, C. Zhuo, et al. 2014. PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. The Journal of Biological Chemistry 289(39): 26872–26881.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Morawski, P.A., P. Mehra, C. Chen, et al. 2013. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. The Journal of Biological Chemistry 288(34): 24494–24502.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nakahira, K., A. Morita, N.S. Kim, et al. 2013. Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PloS One 8(10): e77099.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Song, X., B. Li, Y. Xiao, et al. 2012. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Reports 1(6): 665–675.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rudra, D., P. Deroos, A. Chaudhry, et al. 2012. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nature Immunology 13(10): 1010–1019.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Vang, K.B., J. Yang, S.A. Mahmud, et al. 2008. IL-2, −7, and −15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. Journal of Immunology 181(5): 3285–3290.CrossRefGoogle Scholar
  82. 82.
    Fainboim, L., and L. Arruvito. 2011. Mechanisms involved in the expansion of Tregs during pregnancy: role of IL-2/STAT5 signalling. Journal of Reproductive Immunology 88(2): 93–98.PubMedCrossRefGoogle Scholar
  83. 83.
    Linker-Israeli, M. 1992. Cytokine abnormalities in human lupus. Clinical Immunology and Immunopathology 63(1): 10–12.PubMedCrossRefGoogle Scholar
  84. 84.
    Humrich, J.Y., C. Von Spee-Mayer, E. Siegert, et al. 2015. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Annals of the Rheumatic Diseases 74(4): 791–792.PubMedCrossRefGoogle Scholar
  85. 85.
    Gu, A.D., Y. Wang, L. Lin, et al. 2012. Requirements of transcription factor Smad-dependent and -independent TGF-beta signaling to control discrete T-cell functions. Proceedings of the National Academy of Sciences of the United States of America 109(3): 905–910.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ouyang, W., O. Beckett, Q. Ma, et al. 2010. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32(5): 642–653.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Liu, Y., P. Zhang, J. Li, et al. 2008. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nature Immunology 9(6): 632–640.PubMedCrossRefGoogle Scholar
  88. 88.
    Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, et al. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 72(2): 146–153.PubMedCrossRefGoogle Scholar
  89. 89.
    Su, D.L., Z.M. Lu, M.N. Shen, et al. 2012. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. Journal of Biomedicine & Biotechnology 2012: 347141.CrossRefGoogle Scholar
  90. 90.
    Yang, L., D.E. Anderson, C. Baecher-Allan, et al. 2008. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454(7202): 350–352.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Volpe, E., N. Servant, R. Zollinger, et al. 2008. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nature Immunology 9(6): 650–657.PubMedCrossRefGoogle Scholar
  92. 92.
    Manel, N., D. Unutmaz, and D.R. Littman. 2008. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nature Immunology 9(6): 641–649.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Eisenstein, E.M., and C.B. Williams. 2009. The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatric Research 65(5 Pt 2): 26r–31r.PubMedCrossRefGoogle Scholar
  94. 94.
    Veldhoen, M., R.J. Hocking, C.J. Atkins, et al. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2): 179–189.PubMedCrossRefGoogle Scholar
  95. 95.
    Grondal, G., I. Gunnarsson, J. Ronnelid, et al. 2000. Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clinical and Experimental Rheumatology 18(5): 565–570.PubMedGoogle Scholar
  96. 96.
    Linker-Israeli, M., R.J. Deans, D.J. Wallace, et al. 1991. Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. Journal of Immunology 147(1): 117–123.Google Scholar
  97. 97.
    Umare, V., V. Pradhan, M. Nadkar, et al. 2014. Effect of proinflammatory cytokines (IL-6, TNF-alpha, and IL-1beta) on clinical manifestations in Indian SLE patients. Mediators of Inflammation 2014: 385297.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kahlenberg, J.M., and M.J. Kaplan. 2014. The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Current Opinion in Rheumatology 26(5): 475–481.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Voronov, E., M. Dayan, H. Zinger, et al. 2006. IL-1 beta-deficient mice are resistant to induction of experimental SLE. European Cytokine Network 17(2): 109–116.PubMedGoogle Scholar
  100. 100.
    Aringer, M., and J.S. Smolen. 2008. The role of tumor necrosis factor-alpha in systemic lupus erythematosus. Arthritis Research & Therapy 10(1): 202.CrossRefGoogle Scholar
  101. 101.
    Sultan, M.M., and H.S. Abdulla. 2010. Assessment of proinflammatory Th1 cytokines (IL18-IFN) and Th2 cytokine (IL13) concentrations in patients with autoimmune rheumatic diseases (Systemic Lupus Erythematosus, Rheumatoid Artharitis andSystemic Sclerosis. Egyptian Journal of Hospital Medicine 38: 1–12.Google Scholar
  102. 102.
    Capper, E.R., J.K. Maskill, C. Gordon, et al. 2004. Interleukin (IL)-10, IL-1ra and IL-12 profiles in active and quiescent systemic lupus erythematosus: could longitudinal studies reveal patient subgroups of differing pathology? Clinical and Experimental Immunology 138(2): 348–356.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ikeda, S., S. Saijo, M.A. Murayama, et al. 2014. Excess IL-1 signaling enhances the development of Th17 cells by downregulating TGF-β–induced Foxp3 expression[J]. The Journal of Immunology 192(4): 1449–1458.PubMedCrossRefGoogle Scholar
  104. 104.
    Long, M., S.G. Park, I. Strickland, et al. 2009. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31(6): 921–931.PubMedCrossRefGoogle Scholar
  105. 105.
    Mao, X., Y. Wu, H. Diao, et al. 2014. Interleukin-6 promotes systemic lupus erythematosus progression with Treg suppression approach in a murine systemic lupus erythematosus model. Clinical Rheumatology 33(11): 1585–1593.PubMedCrossRefGoogle Scholar
  106. 106.
    Banerjee, D.K., M.V. Dhodapkar, E. Matayeva, et al. 2006. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108(8): 2655–2661.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Elewa, E.A., O. Zakaria, E.I. Mohamed, et al. 2013. The role of interleukins 4, 17 and interferon gamma as biomarkers in patients with Systemic Lupus Erythematosus and their correlation with disease activity. Egyptian Rheumatologist 36(1): 21–27.CrossRefGoogle Scholar
  108. 108.
    Mok, M.Y., H.J. Wu, Y. Lo, et al. 2010. The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. The Journal of Rheumatology 37(10): 2046–2052.PubMedCrossRefGoogle Scholar
  109. 109.
    Arora, V., J. Verma, V. Marwah, et al. 2012. Cytokine imbalance in systemic lupus erythematosus: a study on northern Indian subjects. Lupus 21(6): 596–603.PubMedCrossRefGoogle Scholar
  110. 110.
    Pace, L., C. Pioli, and G. Doria. 2005. IL-4 modulation of CD4+CD25+ T regulatory cell-mediated suppression. Journal of Immunology 174(12): 7645–7653.CrossRefGoogle Scholar
  111. 111.
    Dardalhon, V., A. Awasthi, H. Kwon, et al. 2008. IL-4 inhibits TGF-beta-induced Foxp3+ T cells, and together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nature Immunology 9(12): 1347–1355.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Avramescu, C., V. Biciusca, T. Daianu, et al. 2010. Cytokine panel and histopathological aspects in the systemic lupus erythematosus. Romanian Journal of Morphology and Embryology 51(4): 633–640.PubMedGoogle Scholar
  113. 113.
    Chun, H.Y., J.W. Chung, H.A. Kim, et al. 2007. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. Journal of Clinical Immunology 27(5): 461–466.PubMedCrossRefGoogle Scholar
  114. 114.
    Viallard, J.F., J.L. Pellegrin, V. Ranchin, et al. 1999. Th1 (IL-2, interferon-gamma (IFN-gamma)) and Th2 (IL-10, IL-4) cytokine production by peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clinical and Experimental Immunology 115(1): 189–195.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lee, T.P., S.J. Leu, J.C. Huang, et al. 2009. Anti-ribosomal phosphoprotein autoantibody triggers interleukin-10 overproduction via phosphatidylinositol 3-kinase-dependent signalling pathways in lipopolysaccharide-activated macrophages. Immunology 127(1): 91–102.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Annacker, O., R. Pimenta-Araujo, O. Burlen-Defranoux, et al. 2001. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. Journal of Immunology 166(5): 3008–3018.CrossRefGoogle Scholar
  117. 117.
    Hara, M., C.I. Kingsley, M. Niimi, et al. 2001. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. Journal of Immunology 166(6): 3789–3796.CrossRefGoogle Scholar
  118. 118.
    Li, N., T. Ma, J. Han, et al. 2014. Increased apoptosis induction in CD4+ CD25+ Foxp3+ T cells contributes to enhanced disease activity in patients with rheumatoid arthritis through IL-10 regulation. European Review for Medical and Pharmacological Sciences 18(1): 78–85.PubMedGoogle Scholar
  119. 119.
    Zheng, Y., S.Z. Josefowicz, A. Kas, et al. 2007. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445(7130): 936–940.PubMedCrossRefGoogle Scholar
  120. 120.
    Liston, A., L.F. Lu, D. O’carroll, et al. 2008. Dicer-dependent microRNA pathway safeguards regulatory T cell function. The Journal of Experimental Medicine 205(9): 1993–2004.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kohlhaas, S., O.A. Garden, C. Scudamore, et al. 2009. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. Journal of Immunology 182(5): 2578–2582.CrossRefGoogle Scholar
  122. 122.
    Kaga, H., A. Komatsuda, A. Omokawa, et al. 2015. Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-alpha in PBMCs from patients with SLE. Modern Rheumatology 25(6): 865–870.PubMedCrossRefGoogle Scholar
  123. 123.
    Karagiannidis, C., M. Akdis, P. Holopainen, et al. 2004. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. The Journal of Allergy and Clinical Immunology 114(6): 1425–1433.PubMedCrossRefGoogle Scholar
  124. 124.
    Bereshchenko, O., M. Coppo, S. Bruscoli, et al. 2014. GILZ promotes production of peripherally induced Treg cells and mediates the crosstalk between glucocorticoids and TGF-beta signaling. Cell Reports 7(2): 464–475.PubMedCrossRefGoogle Scholar
  125. 125.
    Boschetti, G., S. Nancey, F. Sardi, et al. 2011. Therapy with anti-TNFalpha antibody enhances number and function of Foxp3(+) regulatory T cells in inflammatory bowel diseases. Inflammatory Bowel Diseases 17(1): 160–170.PubMedCrossRefGoogle Scholar
  126. 126.
    Javeed, A., B. Zhang, Y. Qu, et al. 2009. The significantly enhanced frequency of functional CD4+CD25+Foxp3+ T regulatory cells in therapeutic dose aspirin-treated mice. Transplant Immunology 20(4): 253–260.PubMedCrossRefGoogle Scholar
  127. 127.
    Weigert, O., C. Von Spee, R. Undeutsch, et al. 2013. CD4+Foxp3+ regulatory T cells prolong drug-induced disease remission in (NZBxNZW) F1 lupus mice. Arthritis Research & Therapy 15(1): R35.CrossRefGoogle Scholar
  128. 128.
    Al-Homsi, A.S., T.S. Roy, K. Cole, et al. 2015. Post-transplant high-dose cyclophosphamide for the prevention of graft-versus-host disease. Biology of Blood and Marrow Transplantation 21(4): 604–611.PubMedCrossRefGoogle Scholar
  129. 129.
    Luznik, L., P.V. O’donnell, and E.J. Fuchs. 2012. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Seminars in Oncology 39(6): 683–693.PubMedCrossRefGoogle Scholar
  130. 130.
    Zhu, Y., J. Li, Y. Bai, et al. 2014. Hydroxychloroquine decreases the upregulated frequencies of Tregs in patients with oral lichen planus. Clinical Oral Investigations 18(8): 1903–1911.PubMedCrossRefGoogle Scholar
  131. 131.
    Miyara, M., Y. Ito, and S. Sakaguchi. 2014. TREG-cell therapies for autoimmune rheumatic diseases. Nature Reviews. Rheumatology 10(9): 543–551.PubMedCrossRefGoogle Scholar
  132. 132.
    Wang, J., T.W. Huizinga, and R.E. Toes. 2009. De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid. Journal of Immunology 183(6): 4119–4126.CrossRefGoogle Scholar
  133. 133.
    Zhou, X., N. Kong, J. Wang, et al. 2010. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. Journal of Immunology 185(5): 2675–2679.CrossRefGoogle Scholar
  134. 134.
    Lu, L., Q. Lan, Z. Li, et al. 2014. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proceedings of the National Academy of Sciences of the United States of America 111(33): E3432–E3440.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Battaglia, M., A. Stabilini, B. Migliavacca, et al. 2006. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. Journal of Immunology 177(12): 8338–8347.CrossRefGoogle Scholar
  136. 136.
    Battaglia, M., A. Stabilini, and M.G. Roncarolo. 2005. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105(12): 4743–4748.PubMedCrossRefGoogle Scholar
  137. 137.
    Basu, S., T. Golovina, T. Mikheeva, et al. 2008. Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. Journal of Immunology 180(9): 5794–5798.CrossRefGoogle Scholar
  138. 138.
    Peccatori, J., A. Forcina, D. Clerici, et al. 2015. Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors. Leukemia 29(2): 396–405.PubMedCrossRefGoogle Scholar
  139. 139.
    Polansky, J.K., K. Kretschmer, J. Freyer, et al. 2008. DNA methylation controls Foxp3 gene expression. European Journal of Immunology 38(6): 1654–1663.PubMedCrossRefGoogle Scholar
  140. 140.
    Klatzmann, D., and A.K. Abbas. 2015. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nature Reviews Immunology 15(5): 283–294.PubMedCrossRefGoogle Scholar
  141. 141.
    Liao, W., J.X. Lin, L. Wang, et al. 2011. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nature Immunology 12(6): 551–559.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Yu, A., I. Snowhite, F. Vendrame, et al. 2015. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64(6): 2172–2183.PubMedCrossRefGoogle Scholar
  143. 143.
    Yu, A., L. Zhu, N.H. Altman, et al. 2009. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30(2): 204–217.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Rheumatology and ImmunologyAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
  2. 2.Immunology and Hematopoiesis Division, Department of Oncology and MedicineJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations